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The motion of a rigid body on the elastic foundation is considered. It is supposed that the

inertia tensor of the body is nearly symmetrical one and the mass center of the body is near its

axis of symmetry. The elastic foundation is simulated by the ring plate, the external contour

of which is fixed and the internal contour of which is connected with the rigid body by the

bearing, so that the rigid body can freely rotate around its axis of symmetry. A moment of

the electromotor and a dissipative moment act on the body. The system under consideration

is one of the simple models of centrifuge. The inertial properties of the elastic foundation

is taken into account, that allows to adequately describe the motion of the centrifuge at

large angular velocities of the rigid body rotation. Nonlinear formulation of the problem is

presented. Proposed formulation of the problem is essentially based on using of the turn-

tensor both for description of the rotation of the plate particles and for description of the

rigid body rotation. Linear formulation of the problem is studied in detail. The motion of

the system at different parameters of the plate is analyzed. In particular, comparative analysis

of the motion of the system in the case of thin plate and in the case of thick plate with small

shear stiffness is carried out. Influence of the different types of the moment of motor and

the dissipative moment is studied.

1. Introduction.

Fig. 1. A rigid body on an elastic plate.

The motion of a rigid body on the non-

linear elastic foundation is investigated.

The inertia tensor of the rigid body slightly

differs from symmetrical one. The mass

center of the body is near its axis of sym-

metry. The elastic foundation is simulated

by a ring plate. The external contour of

the plate is fixed. The internal contour of

the plate is joined with the rigid body by

the bearing (see Fig. 1). When the plate is

not deformed, the axis of symmetry of the

body is orthogonal to the plate. The rigid

body is rotated around its axis of sym-

metry by the restricted power motor. The

nutational vibrations of the rigid body take

place. They are caused by the unbalanced

mass and errors in the initial conditions.

A nonlinear formulation of the problem is considered. The angle of nutation of the rigid

body is assumed to be not small. Hence, the deformations of the plate are also assumed

to be not small and the nonlinear plate theory should be used. Two formulations of the

problem are considered. The first one is: the rigid body has a fixed point. The second one

is: the rigid body has no fixed points. To reduce the problem to the system of differential

equations, which can be solved by numerical methods, is objective of the investigation.

Formulation of the conditions of conjunction of the rigid body and the plate is the main

difficulty of the investigation. The problem of formulation of conditions of conjunction

is sucessfully solved due to using the identical mathematical technique (the direct tensor
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technique) for description of the plate motion and the rigid body motion. Let us note, that

it is very important to obtain the system of differential equations in the form, convenient

for using in numerical procedures. This problem is solved by the special choice of the

basic variables, describing the rotations of the rigid body and the plate particles. (For

example, the angles by Euler are not convenient for numerical solution of the problem,

because the solution can contain singular points.) In this paper the rotations are described

by the turn-tensor. The special representation of the turn-tensor by the turn-vector is

used. This representation was proposed by P. A. Zhilin [3], [4]. Let us introduce into

consideration the turn-vector. Let us note, that there exist different objects, which are

called ”turn-vector”. We will use the turn-vector associated with the turn-tensor most

simple and naturally [4]. Let us consider representation of the turn-tensor in the form by

Euler

Here is the angle of turn and is the unit vector, directed along the axis of turn.

The vector

is called the turn-vector. Using the definition (1.2) the turn-tensor (1.1) can be expressed

in terms of the turn-vector

The left angular velocity vector and the right angular velocity vector are defined as

follows

The angular velocity vectors and are expressed in terms of the turn-vector by

the formulae

where tensor has the form

2. A nonlinear plate theory.

The Reissner’s type nonlinear plate theory is used [3]. This theory is described by the 10 th

order system of differential equations. Five boundary conditions should be formulated in

each point of the plate contour.

The positions and the orientations of the plate particles are determined by the position

vector and the turn-tensor . Using cylindrical coordinate system, vector and

tensor are represented as follows
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Projection of the turn-vector on the unit vector , orthogonal to the nondeformed

plate, is considered to be equal to zero, because there is no reaction of the plate to rotation

around the axis, directed along the vector .

The equations of the motion of the plate are

Here and are the force tensor and the moment tensor, is the twodimensional

Hamilton’s operator. The linear and angular velocities of the plate particles are calculated

by the formulae

The inertia tensors of the plate particles have the form

The relations by Cauchy – Green are

Here and are the energetic tensors. They are expressed in terms of the tensors

and as follows

The tensors and are called the first and the second strain measures. They are

calculated by the formulae

The density of the strain energy has the form
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Fig. 2. A rigid body on an elastic plate. The

body has a fixed point.

Fig. 3. A rigid body on an elastic plate. The

body has no fixed points.

where . The tensors , , are called the strain tensors. The tensors

, , , are called the elastic modulus tensors; the expressions for

them can be found in [3].

The boundary conditions on the external plate contour are formulated as follows

3. The motion of the rigid body. Case 1: the rigid body has a fixed point.

The rigid body is joined with the internal plate contour by the bearing (see Fig. 2). Hence,

the turn-tensors of particles of the internal plate contour differ from the turn-tensor of the

external bearing ring by the turn around the bearing axis only. The rigid body has a fixed

point, fastened by the spherical hinge. The fixed point is situated on the axis of symmetry

of the rigid body and coincides with the plate center.

The turn-tensor of the external bearing ring has the form

The turn-vectors and the position vectors of particles of the internal plate contour are

related with the quantities, defining the motion of the external bearing ring, as follows

The turn-tensor of the rigid body differs from the turn-tensor of the external bearing

ring by the turn around the bearing axis

The elastic force and the elastic moment, acting from the plate on the external bearing

ring, have the form
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The first law of dynamics by Euler as applied to the motion of the rigid body has the

following form

where is the position vector of the mass center, is the gravity force, is the

reaction in the hinge. The equations (3.5) allow to find the vector , if the motion of

the rigid body is known.

Let us consider the rotation of the external bearing ring. The bearing mass is assumed

to be equal to zero. Therefore, the second law of dynamics by Euler as applied to the

motion of the external bearing ring takes the form of the equation of balance of moments.

Three moments act on the external bearing ring: the elastic moment from the plate ,

the moment of friction between the rings of the bearing and

the moment of the reaction of the rigid body , which is orthogonal to the bearing

axis: . Hence, the projection of the second law of dynamics by Euler

on the axis, directed along the vector , takes the form

The equation (3.8) relates the angles and .

The second law of dynamics by Euler as applied to the motion of the rigid body is

formulated as follows

The equation (3.10) is written with respect to the fixed point of the rigid body. Here is

the ineria tensor of the rigid body, is the tensor coefficient of viscous friction,

is the moment of the restricted power motor. Taking into account the equation (3.8), the

equation (3.10) can be rewritten in the form

Thus, the boundary conditions on the internal plate contour plate are given by the

equations (2.20), (3.8), (3.11).
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4. The motion of the rigid body. Case 2: the rigid body has no fixed

points.

The rigid body is joined with the internal contour of the plate by the bearing (see Fig. 3).

The turn-tensor of the external bearing ring has the form the same as in the case when

the rigid body has a fixed point. The turn-tensors of particles of the internal plate contour

differ from the turn-tensor of the external bearing ring by the turn around the bearing axis

only.

The position vector of particles of the internal plate contour is expressed in terms of the

quantities, defining the motion of the external bearing ring by the formulae

where is the position vector of the point of the rigid body, which coincides with

the plate center, if the plate is not deformed. The turn-tensor of the rigid body and the

position vector of its mass center have the form

The elastic force and the elastic moment, acting from the plate on the external bearing

ring, are calculated by the formulae

The first law of dynamics by Euler as applied to the motion of the rigid body has the

following form

The projection of the second law of dynamics by Euler as applied to the motion of

the external bearing ring on the axis, directed along the vector , relates the angles

and . It has the form (3.8).

Taking into account the relation (3.8), the second law of dynamics by Euler as applied

to the motion of the rigid body is formulated as follows

where the tensor coefficient of viscous friction and the moment of the restricted

power motor have the form the same as in the case when the rigid body has a fixed

point (see formulae (3.10)).

Thus, the boundary conditions on the internal plate contour are given by the equations

(3.8), (3.3), (3.8), (4.1).
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5. Some results of analysis of the linear formulation of the problem.

The stationary regime of the motion of the rigid body on the elastic plate is investigated

( ). The turn-vectors, defining the rotations of the plate particles, and the turn-

vector, defining the nutation vibrations of the rigid body, are assumed to be small. The

linear formulation of the problem is considered. This problem has an exact analytical

solution. Numerical analysis of the solution was carried out for two types of the plate: the

thin plate, the shearing thickness of which is much more than its bending stiffness

, and the thick plate, the shearing thickness of which is less than its bending

stiffness . Influence of the different types of the moment of motor and the dissipative

moment was analyzed. The following results were obtained.

Free vibrations of the system

The plate is thin, . In this case the eigenfrequencies and the eigenfunctions

are essentially depend on the parameters of the rigid body and its angular velocity .

It is known that the following property of the eigenvalues takes place: if , then

, if , then . As increases the difference

between and increases. The difference between and

depends on the number . When the number becomes large so that

, then the difference between and tends to zero. The following

property of several first eigenfunctions takes place: the displacements and the stresses vary

along the coordinate so that they take the largest values on the internal plate contour,

joined with the rigid body. Let us note, that all these results are the same as the results of

the investigation of analogous problem of the motion of the rigid body on the elastic rod

[4].

The plate is thick, . As the plate thickness increases and the cross shear

coefficient decreases the difference between and decreases and when

the difference becomes small. If eigenfrequencies little depend

on the angular velocity of the rigid body , if any. The form of the eigenfunctions is

essentially differs from it in the case of the thin plate. This fact is caused by the difference

of the asymptotic properties of solution in the cases of the thin plate and the thick plate

with small . If the plate is thin and , then , . If the plate

is thick and , then , . In the case of the thick plate with

small , the displacements vary along the coordinate so that the cross displacement

takes the largest values in the middle points of the plate and smallest value on the

internal plate contour, joined with the rigid body. Projections of the turn-vector take

the largest values on the internal plate contour, however they are much less than the

largest values of the cross displacement . As the plate thickness increases and the cross

shear coefficient decreases the displacements on the internal plate contour decrease

and the stresses increase so that the increase of the stresses is proportional to the decrease

of the displacements.

Forced vibrations of the system, caused by the unbalanced mass of

the rigid body

As in the case of free vibrations, in the case of forced vibrations when the plate

thickness increases and the cross shear coefficient decreases the displacements on the

internal plate contour decrease and the stresses on the internal plate contour increase.

However, unlike the case of free vibrations, the decrease of the displacements is not

directly proportional to the increase of the stresses. In the case of forced vibrations the

decrease of the displacements is much more than the increase of the stresses. Let us

suppose that free vibrations of the system are damped by the friction and the forced
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vibrations of the system are caused by the unbalanced mass only. In this case using of the

thick plate, having small shearing stiffness, allows to essentially decrease the amplitude

of the nutational vibrations of the rigid body, and the increase of the stresses will not be

large.

The influence of the friction on the free and forced vibrations of the

system

It is determined that the influence of the friction depends on the type of the moment

of motor. If the moment of motor is the following one ( ), then the rotation of

the rigid body around its axis of symmetry is stable at any values of the coefficients of

viscous friction and . In the case of the moment of motor, having the constant

direction ( ), stability of the rotation of the rigid body around its axis of symmetry

essentially depends on the ratio of the coefficients of viscous friction and . The

increase of the coefficient is the stabilizing factor, the increase of the coefficient

is the destabilizing factor. At the motion is unstable. When is large and

is small, the motion becomes stable. In the case of the moment of motor being the

superposition of the constantly directed moment and the following moment ( ),

the influence of the destabilizing coefficient of friction is less than in the case of the

constantly directed moment of motor.

6. The motion of a multi-rotor gyrostst on the elastic plate.

It is known, that the angular velocities of high-speed centrifuges are more than the first

eigenfriquencies of them. Hence, as accelerating and decelerating the centrifuge has to

pass over the critical angular velocities . Let us compare the processes of

deceleration of two models of the centrifuge: the rigid body on the elastic plate and the

multi-rotor gyrostst on the elastic plate (see Fig. 4).

Fig. 4. A multi-rotor gyrostat on an elastic

plate.

If the angular velocity of the rigid

body is large, then the difference bet-

ween the eigenfrequencies and

is large. Because of that several

first eigenfrequencies are small. As the

angular velocity of the rigid body de-

creases the difference between and

decreases and the first eigenfre-

quencies increase. As a result the values

of the first critical angular velocities

are much more than the values

of the first eigenfrequencies .

When the rigid body passes over the large

critical angular velocities, the large dyna-

mical loads act on the plate and the am-

plitude of the nutational vibrations of the

rigid body quickly increases.

Let us suppose, that several rotors, the direction of rotation

of which coincides with the direction of the carrier body rotation, are added in the system.

Then the moment of momentum of the system increases. Hence, the difference between

the eigenfrequencies and increases so that the first eigenfrequency becomes

small and the second eigenfrequency becomes large. If the moment of momentum of the
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system is rather large, then the angular velocity of the carrier body at the working regime

will be less than the second eigenfrequency. Let us suppose that the angular velocity of

the carrier body decreases and the angular velocities of the additional rotors increase so

that the moment of momentum of the system is constant. In this case the critical angular

velocities are equal to the eigenfrequencies of the system. Hence, during decelerating,

the carrier body will pass over the first low-frequency resonance only. When the carrier

body passes over the low-frequency resonance, the dynamical loads, acting on the plate

are not very large and the amplitude of the nunational vibration of the carrier body does

not highly increase.

Let us suppose that one rotor, the direction of the rotation

of which is opposite to the direction of the carrier body rotation, is added in the system.

Then the moment of momentum of the system increases. Hence, the difference between

the eigenfrequencies and decreases and the first eigenfrequency increases.

Thus, using of the additional rotor allows to increase the working angular velocity of the

carrier body, so that it will be less than the first eigenfrequency.

Acknowledgements

The Bibliography

1. P. A. Zhilin. A new approach to the analysis of free rotations of rigid bodies. //

Z. angew.Math.Mech. 1996. V. 76. N 4. P. 187–204.

2. P. A. Zhilin. Rigid body oscillator: a general model and some results. // Acta Mechanica. 2000.

N 142. P. 169-193.

3. H.Altenbach, P. A. Zhilin. The jeneral theory of elastic simple shells. // Advances in Mechanics.

1988. V. 11. N 4. P. 107-148.

4. P. E. Tovstik, T. P. Tovstik. Dynamics of rigid body on the nonlinear elastic rotating rod. // Proc.

of the XXVII Summer School ”Nonlnear oscillations in mecanical sustems.” St.Petersburg, 2000.

P. 173–186.

Laboratory of Dynamics of Mechanical Systems, Institute for Problems in Mechanical

Engineering RAS, Bolshoy pr. V.O., 61, RUS-199178, St.Petersburg, Russia.

Department of Theoretical Mechanics, St.–Petersburg State Technical University,

Polytechnicheskaya 29, RUS-195251, St.Petersburg, Russia.

APM’ 2001 Saint-Petersburg (Repino), June 21–30, 2001 347


