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Abstract We consider the mechanical model of a two-component medium whose first component is the
classical continuum and the other component is the continuum having only the rotational degrees of freedom.
We show that the proposed model can be used for description of thermal and dissipative phenomena. In special
cases, the mathematical description of the proposed model is proved to reduce to well-known equations such
as the heat conduction equation, the self-diffusion equation and the equations of the coupled problem of
thermoelasticity. In the context of the proposed theory, we consider the original model of internal damping
and give interpretation of the volume viscosity.

1 Introduction

At present, thermodynamics covers a widespread frame including gas dynamics, thermoelasticity, thermo-
viscoelasticity, thermoelectric and thermomagnetic phenomena, phase changes and chemical reactions. At
the same time, it constitutes a set of science areas which are not connected to each other and differ by both
interpretation of the fundamental concepts and applied mathematical methods. Dealing with the mathematical
methods, we should refer to the thermodynamic potential theory underlying the chemical and electrochemical
thermodynamics, continuum mechanics within the framework of which the models of thermoelastic and ther-
moviscoelastic media have been developed, the methods of crystal lattice dynamics underlying the description
of transport phenomena in solids, and also the classical and quantum statistics. In view of the aforesaid, it is
important to develop a unified theory for description of all thermodynamical phenomena which are studied
now in different science areas by using the different methods. We are firmly convinced that it can be made on
the basis of the fundamental laws of mechanics by using the continuum mechanics method.

The proposed theory is based on the continual mechanical model whose mathematical description in special
cases is proved to reduce to the well-known equations of thermodynamics and thermoelasticity. It is the presence
of additional rotational degrees of freedom and, accordingly, additional inertia and elastic characteristics which
can be interpreted as the thermodynamical constants that distinguish the proposed model among other continual
models. In fact, this model is a two-component medium. The first component is the classical continuum with
translational and rotational degrees of freedom and the other component is the continuum having only the
rotational degrees of freedom and the moment interactions. The idea of mathematical description of various
physical phenomena in microcosm by using the continual models based on rotational degrees of freedom and
the moment interactions was repeatedly asserted by Zhilin [1], [2], [3], [4]. The model proposed in the present
paper is a realization of this idea as applied to the description of thermal and dissipative phenomena.
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The proposed model does not pretend to be an explanation of the physical nature of thermal phenomena.
Interpretation of the temperature, entropy and other thermodynamic quantities given in accordance with the
proposed model is no more than the mechanical analogy. However, use of these mechanical counterparts allows
one to obtain the well-known equations describing the thermal and diffusion processes within the framework
of the proposed model. The mathematical description of the proposed mechanical model includes as special
cases not only the classical formulation of coupled problem of thermoelasticity but also the formulation of the
coupled problem of thermoelasticity with the hyperbolic type heat conduction equation. In the context of the
proposed mechanical model, an original interpretation of the volume (acoustic) viscosity is offered. Just due
to our interpretation of the volume viscosity, we treat the proposed theory as a theory of thermoviscoelasticity.

2 Fundamental laws of mechanics

2.1 Body-point and its dynamic structures

Constructing a model of continuum, we will use a body-point (a one-spin particle) as the base material object.
The body-point, unlike a point mass, undergoes to not only translational but also rotational (spinor) motions; it
is the material object occupying zero volume in space. Position of a body-point is considered to be determined
if the position vector R(t) and the rotation tensor P(t) are assigned. For the first time, a body-point (a one-spin
particle) has been introduced into consideration by Zhilin, see e. g. [1], [2], [3].

Definition 1 The tensor of rotation is a properly orthogonal tensor which represents the solution of the equa-
tions

P ·PT = PT ·P = E, detP = 1, (1)

where E is the unit tensor. The translational and angular velocities of a body-point are calculated by the
formulas

v(t) =
dR(t)

dt
, ω(t) = −1

2

(
dP(t)

dt
·PT (t)

)
×
, (2)

where ( )× denotes the vector invariant of a tensor.

Definition 2 The kinetic energy of a body-point is a quadratic form of its translational and angular velocities,
see [1], [2], [3]:

K =
1

2
mv · v + v ·mB · ω +

1

2
ω ·mJ · ω. (3)

Here, the second-rank tensors mB, mJ are the inertia tensors of a body-point, and m is the mass of a body-
point, respectively. The inertia tensors are frame-indifferent characteristics of a body-point, therefore, they
should depend on the rotation tensor P(t) as

mB(t) = P(t) ·mB0 ·PT (t), mJ(t) = P(t) ·mJ0 ·PT (t), (4)

where mB0, mJ0 are the inertia tensors at the reference position, i. e. for those values t0 at which P(t0) = E.

Definition 3 The momentum of a body-point is the linear form of its translational and angular velocities, see
[1], [2], [3]:

K1 =
∂K

∂v
= mv+mB · ω. (5)

Definition 4 The proper angular momentum (dynamic spin) of a body-point is the linear form of its transla-
tional and angular velocities, see [1], [2], [3]:

K2 =
∂K

∂ω
= v ·mB+mJ · ω. (6)
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Definition 5 The angular momentum of a body-point calculated with respect to a fixed reference point Q is
defined by the following formula, see [1], [2], [3]:

KQ
2 = (R−RQ)× ∂K

∂v
+

∂K

∂ω
. (7)

The first term on the right-hand side of Eq. (7) is the moment of momentum and the second one is the dynamic
spin.

The kinetic energy, the momentum and the angular momentum are the additive functions of mass. This implies
that if the body A consists of body-points Ai then

K(A) =
∑
i

K(Ai), K1(A) =
∑
i

K1(Ai), KQ
2 (A) =

∑
i

KQ
2 (Ai). (8)

In the case of distributed mass the sums in the right-hand sides of Eqs. (8) should be replaced by the corre-
sponding integrals.

2.2 Interactions in a system of body-points

Below we enunciate the concept of interactions of bodies of the general form, as suggested in works by Zhilin,
see e. g. [1], [2], [3]. Let us consider a collection of body-points, which we call a body A. All remaining
body-points are called the environment of body A and denoted by a symbol Ae. To model the action of the
environment Ae on the body A we should assign a pair of vectors: a force vector and a moment vector. The
force and moment vectors are additive on both the bodies constituting the body A and the bodies constituting
its environment Ae. We denote the force acting on body A from body B by the vector F(A,B). Thus, the force
F(A,B) is the reaction of body B to the change of a spatial position of body A.

Definition 6 The moment MQ(A,B) acting on body A from body B, which is calculated with respect to a
reference point Q, can be expressed as follows:

MQ(A,B) = (RP −RQ)× F(A,B) + LP (A,B), (9)

where the vector RQ defines the position of a reference point Q, and the vector RP defines the position of
a datum point P . The reference point Q can be chosen arbitrary but it should be fixed (motionless). The first
term on the right-hand side of Eq. (9) is called the moment of force. The vector LP (A,B) is called the proper
moment. It depends on the choice of a datum point P but not on the choice of a reference point Q. The proper
moment LP (A,B) is reaction of body B to the rotation of body A about the datum point P .

By definition, the full moment MQ(A,B) does not depend on the choice of a datum point. In other words,
the datum point being changed, the properly moment vector varies in such a way that the full moment vector
MQ(A,B) remains unchanged. Consequently,

LS(A,B) = (RP −RS)× F(A,B) + LP (A,B). (10)

Equation (10) provides us with the relation between the proper moments calculated with respect to different
datum points.

2.3 The balance equations in Euler’s mechanics

In Newton’s mechanics, the equations of momentum balance, angular momentum balance and energy balance
for a system of point masses follow from the second Newton’s law. In Euler’s mechanics that considers the
motion of the particles possessing rotational degrees of freedom and an internal structure, all the balance
equations are independent laws. The successive statement of Euler’s mechanics can be found in works by
Zhilin [1], [2], [3]. Here, we briefly formulate three fundamental laws of Euler’s mechanics.
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The equation of momentum balance: The rate in the momentum change of body A is equal to the force
acting on the body A from its environment plus the rate of the momentum supply in body A, namely:

dK1(A)

dt
= F(A,Ae) + k1(A). (11)

The equation of angular momentum balance: The rate in the angular momentum change of body A,
calculated with respect to a reference point Q, is equal to the moment acting on body A from its environment,
calculated with respect to the same reference point Q, plus the rate of the angular momentum supply in a body
A, namely:

dKQ
2 (A)

dt
= MQ(A,Ae) + kQ

2 (A). (12)

The equation of energy balance: The rate in the total energy change of body A is equal to the external force
and moment power N(A,Ae) plus the rate of supply of the energy of non-mechanical nature ε(A), see [1]:

dE(A)

dt
= N(A,Ae) + ε(A). (13)

The total energy of a body E(A) is a sum of the kinetic energy and the internal energy: E(A) = K(A)+U(A).
The power of external actions on body A consisting of body-points Ai is the bilinear form of velocities and
actions, see [1]:

N(A,Ae) =
∑
i

[
F(Ai, A

e) · vi + L(Ai, A
e) · ωi

]
. (14)

2.4 Model of a nonclassical particle

If a body-point is not identified with the infinitesimal rigid body then the inertia tensor mB can be considered
as being arbitrary. For the first time that sort of body-points has been introduced into consideration by Zhilin,
see [1], [2], [4]. We will use term “nonclassical” for the particles consisting of body-points whose inertia
tensor mB has both symmetric and antisymmetric parts. Below we construct a model of continuum whose
elementary volume is represented by a nonclassical particle. Now we consider a body-point possessing the
spherical inertia tensors, whose kinetic energy is

K = m∗

(
1

2
v∗ · v∗ +B v∗ · ω∗ +

1

2
J ω∗ · ω∗

)
. (15)

The momentum and the properly angular momentum of this body-point are

K1 = m∗ (v∗ +B ω∗), K2 = m∗ (B v∗ + J ω∗). (16)

Let us note that the problem of free motion of the particle described by Eqs. (15), (16) has been solved in [1],
[2], [4]. Free motion of this particle has been proved to be uniform motion along the helical curve whose axis
is directed along the momentum vector.

3 Continuum of one-rotor gyrostats

3.1 Quasi-rigid body and its approximate model

Let us consider a particle (see Fig. 1 a) which is a quasi-rigid body made of body-points with Eqs. (15), (16).
This particle is a rigid body in the sense that the distances between any two points of this particle are kept
unchanged under arbitrary motions of this particle. However, unlike the standard rigid body, each point of a
quasi-rigid body is a body-point which can rotate independently of rotations of other body-points. In other
words, the quasi-rigid body is a multi-rotor gyrostat whose rotors are body-points that are governed by Eqs.
(15) and (16) under arbitrary rotational motion. The carrier body of a gyrostat is considered to be inertialless
and rotors are supposed to be distributed continuously. The motion of a carrier body is defined by the position
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Fig. 1 Quasi-rigid body and its approximate model

vector of the mass center R(t) of a quasi-rigid body and the rotation tensor P̃(t). The mass center velocity
and the angular velocity of the carrier body are given by the formulas

v(t) =
dR(t)

dt
, ω̃(t) = −1

2

(
dP̃(t)

dt
· P̃T

(t)

)
×
, (17)

where ( )× denotes the vector invariant of a tensor.
Let us consider a rotor whose position with respect to the mass center in the reference configurations is

defined by a position vector r∗. According to the fundamental theorem of the rigid body kinematics, the vector
R∗ defining the rotor position in the actual configuration is calculated by the formula

R∗(r∗, t) = R(t) + P̃(t) · r∗. (18)

The rotation of this rotor is defined by the rotation tensor P∗(r∗, t); the translational and angular velocities are
calculated by the formulas

v∗(r∗, t) = v(t) + ω̃(t)× P̃(t) · r∗, ω∗(r∗, t) = −1

2

(
dP∗(r∗, t)

dt
·PT

∗ (r∗, t)
)

×
. (19)

According to the axioms of additivity (8), the kinetic energy, the momentum and the angular momentum
of a quasi-rigid body A are calculated as follows:

K(A) =

∫
(m)

[
1

2
v∗ · v∗ +B v∗ · ω∗ +

1

2
J ω∗ · ω∗

]
dm =

1

2
m

[
v · v + ω̃ · I∗ · ω̃

]
+

+B

[
v ·

∫
(m)

ω∗dm+ ω̃ · (P̃ ·
∫
(m)

r∗
)× ω∗dm

]
+

1

2
J

∫
(m)

ω∗ · ω∗dm, (20)

K1(A) =

∫
(m)

(v∗ +Bω∗) dm = mv +B

∫
(m)

ω∗dm, (21)

KQ
2 (A) =

∫
(m)

[
R∗ × (v∗ +B ω∗) +B v∗ + J ω∗

]
dm = R×mv +mI∗ · ω̃+

+B
[
R×

∫
(m)

ω∗dm+
(
P̃ ·

∫
(m)

r∗
)× ω∗dm+mv

]
+ J

∫
(m)

ω∗dm, (22)

where the symbol I∗ is used to denote the geometrical inertia tensor of the quasi-rigid body:

mI∗ = P̃ ·mI(0)∗ · P̃T
, mI(0)∗ =

∫
(m)

(
r2∗E− r∗r∗

)
dm. (23)

Let us represent the angular velocity vector ω∗(r∗, t) of the rotors in the form

ω∗(r∗, t) = ω(t) + ω̂(r∗, t), ω(t) =
1

m

∫
(m)

ω∗(r∗, t)dm. (24)
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Here, ω(t) is the average angular velocity of the rotors of a quasi-rigid body; ω̂(r∗, t) is the deviation of the
angular velocity of the given rotor from the average angular velocity. Now we assume that

|ω̂(r∗, t)| � |ω(t)| ⇒ ω∗(r∗, t) ≈ ω(t). (25)

In view of notation (24) and assumption (25) expressions for the kinetic energy, the momentum and the angular
momentum (20)–(22) take the following simplified form:

K(A) = m

(
1

2
v · v +

1

2
ω̃ · I∗ · ω̃ +B v · ω +

1

2
J ω · ω

)
, (26)

K1(A) = m
(
v +Bω

)
, (27)

KQ
2 (A) = m

[
R× (v +B ω) + I∗ · ω̃ +B v + J ω

]
. (28)

An examination of Eqs. (26)–(28) reveals that the approximate expressions for the kinetic energy, the momen-
tum and the angular momentum of a quasi-rigid body, obtained under assumption (25), are coincident with
those of a one-rotor gyrostat (see Fig. 1 b) whose rotor is located in the mass center of the quasi-rigid body. A
carrier body of the gyrostat is the classical rigid body which inertial properties is characterized by inertia tensor
mI∗, and a rotor is a non-classical particle which is similar to the body-points constituting the quasi-rigid body
(see Fig. 1 a).

3.2 Dynamical structure of continuum

The material medium (see Fig. 2) consisting of one-rotor gyrostats (26)–(28) is considered. To derive the
dynamic equations of the continuum, we apply the spatial description. Let vector r determine the position of
some point of space. We introduce following notations: ρ(r, t) is the mass density of the material medium at a
given point of space; v(r, t) is the velocity field; u(r, t) is the displacement field; P̃(r, t), ω̃(r, t) are the fields
of the rotation tensors and the angular velocity vectors of the carrier bodies; P(r, t) and ω(r, t) are fields of the
rotation tensors and the angular velocity vectors of the rotors. In the spatial description, the formulas relating
the velocity vector to the displacement vector and also the angular velocity vectors to the rotation tensors are
written down by means of the material derivative, see [2], [3]:

v =
δu

δt
, ω̃ = −1

2

(
δP̃

δt
· P̃T

)
×
, ω = −1

2

(
δP

δt
·PT

)
×
. (29)

Here, the material derivative
δ

δt
is defined as follows, see [2], [3]:

δ

δt
u(r, t) = lim

�t→0

u(r+ v�t, t+�t)− u(r, t)

�t
≡ d

dt
u(r, t) + v(r, t) · ∇u(r, t). (30)

Fig. 2 Elementary volume of continuum consisting of one-rotor gyrostats
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In accordance with Eqs. (26)–(28) the densities of the kinetic energy, the momentum and the angular
momentum of continuum under consideration take a form

ρK = ρ

(
1

2
v · v +

1

2
ω̃ · I∗ · ω̃ +B v · ω +

1

2
J ω · ω

)
, (31)

ρK1 = ρ
(
v +B ω

)
, ρK2 = ρ

[
r× (v +B ω) + I∗ · ω̃ +B v + J ω

]
, (32)

where the angular momentum density is calculated with respect to the origin of the reference frame. The
particles of continuum under consideration possess the internal degrees of freedom. Therefore, in order to
describe the motion of this continuum, it is not sufficient to formulate the balance equations of the momentum
and the angular momentum for the control volume of the continuum. It is necessary to add these equations to
the balance equation of the angular momentum for the rotors in control volume of the continuum. Therefore
below we need the densities of the momentum and the angular momentum of the carrier bodies

ρK
(cb)
1 = ρ(1− ε)v, ρK

(cb)
2 = ρ

[
r× (1− ε)v + I∗ · ω̃

]
, (33)

and the momentum and the angular momentum of the rotors

ρK
(rot)
1 = ρ(εv +B ω), ρK

(rot)
2 = ρ

[
r× (εv +B ω) +B v + J ω

]
. (34)

The dimensionless parameter ε in Eqs. (33), (34) characterizes the distribution of mass in the gyrostat: if m is
the mass of the gyrostat then (1− ε)m is the mass of its carrier body and εm is the mass of its rotor. Below we
will see that the value of the parameter ε is not important. It is evident that Eqs. (33), (34) do not follow from
Eqs. (32) and they should be considered as additional assumptions. However, it is easy to see that

ρK1 = ρK
(cb)
1 + ρK

(rot)
1 , ρK2 = ρK

(cb)
2 + ρK

(rot)
2 . (35)

3.3 Law of mass conservation and equations of dynamics

Let V and S denote some fixed region in the reference frame (control volume) and its surface, respectively.
Let us formulate the law of mass conservation for the control volume:

d

dt

∫
(V )

ρ(r, t) dV = −
∫
(S)

n · v(r, t)ρ(r, t) dS. (36)

Here, n denotes the unit vector of a normal to the surface S. Using standard line of reasoning we derive from
the Eq. (36) the law of mass conservation in the local form

δρ

δt
+ ρ∇ · v = 0. (37)

Now, we formulate the equation of balance of momentum (11) for the carrier bodies in the control volume V :

d

dt

∫
(V )

ρK
(cb)
1 dV =

∫
(V )

ρ(f + F)dV +

∫
(S)

τndS −
∫
(S)

(n · v)ρK(cb)
1 dS. (38)

Here f is the mass density of external forces; F is the mass density of forces modelling the effect of the rotors;
τn is the force vector modelling the influence of surrounding medium on the carrier bodies of gyrostats being
on surface S of control volume V . Next, we formulate the equation of balance of momentum (11) for the rotors
in the control volume V :

d

dt

∫
(V )

ρK
(rot)
1 dV = −

∫
(V )

ρFdV −
∫
(S)

(n · v)ρK(rot)
1 dS. (39)

The rotors are assumed to interact only by moment rather than forces. External force actions on the rotors are
also supposed to be absent.
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By standard reasoning we introduce the concept of stress tensor concerned with the force vector τ n by
relation τ n = n · τ and from Eqs. (38), (39) we derive the local form of the momentum balance equations for
the carrier bodies and the rotors:

∇ · τ + ρ(f + F) = ρ(1− ε)
δv

δt
, −ρF = ρ

δ

δt

(
εv +Bω

)
. (40)

By obtaining Eqs. (40) we used expressions for the momentum densities (33), (34) and the mass balance
equation (37). Summing up both sides of Eqs. (40) we obtain the momentum balance equations for the
gyrostats

∇ · τ + ρf = ρ
δ

δt

(
v +Bω

)
. (41)

Now we formulate the equation of balance of angular momentum (12) for the carrier bodies in the control
volume V :

d

dt

∫
(V )

ρK
(cb)
2 dV =

∫
(V )

ρ
(
r× f + r×F+m

)
dV +

∫
(S)

(
r× τn +μn

)
dS −

∫
(S)

(n · v)ρK(cb)
2 dS. (42)

Here, m is the mass density of external moments acting on the carrier bodies of gyrostats; μn is the moment
vector modelling the influence of surrounding medium on the carrier bodies of gyrostats being on surface S
of control volume V . Next, we formulate the equation of balance of angular momentum (12) for the rotors in
the control volume V :

d

dt

∫
(V )

ρK
(rot)
2 dV =

∫
(V )

ρ
(−r× F+ L

)
dV +

∫
(S)

TndS −
∫
(S)

(n · v)ρK(rot)
2 dS. (43)

Here L is the mass density of external moments acting on the rotors; Tn is the moment vector modelling the
influence of surrounding medium on the rotors of gyrostats on surface S of control volume V .

By standard reasoning, we introduce the concept of moment stress tensors μ and T which are concerned
with the moment vectors μn and Tn by relations: μn = n · μ, Tn = n · T. Also by standard reasoning we
derive the equations of balance of angular momentum in the local form from Eqs. (42), (43). After simple
transformations, these equations can be written in the form

∇ · μ+ τ× + ρm = ρ
δ

δt

(
I∗ · ω̃

)
. (44)

∇ ·T+ ρL = ρ
[
v ×Bω +

δ

δt

(
Bv + Jω

)]
. (45)

By obtaining Eqs. (44) and (45), we used expression for the angular momentum densities (33), (34), the
equation of mass balance (37), and the equations of momentum balance (40). Equation (44) describes the
rotational motion of the carrier bodies and Eq. (45) characterizes the motion of the rotors. It is easy to see that
Eqs. (44), (45) do not contain the parameter ε.

3.4 Equation of energy balance

Now we formulate the equation of energy balance (13) for the material medium in the control volume V :

d

dt

∫
(V )

ρ(K + U)dV =

∫
(V )

ρ
(
f · v +m · ω̃ + L · ω +Q

)
dV+

+

∫
(S)

(
τn · v + μn · ω̃ +Tn · ω +Hn

)
dS −

∫
(S)

(n · v) ρ(K + U)dS. (46)

Here, U is the internal energy density per unit mass; Q and Hn are the rate of the energy supply in volume and
through surface S, respectively. The rate of the energy supply through the surface can be expressed in term of
energy-flux vector H by the formula Hn = n ·H.
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By standard reasoning, taking into account the equation of mass balance (37), we transform the equation
of energy balance (46) to the local form

ρ
δ

δt
(K + U) = ρf · v + ρm · ω̃ + ρL · ω + (∇ · τ ) · v + (∇ · μ) · ω̃+

+ (∇ ·T) · ω + τ T · ·∇v + μT · ·∇ω̃ +TT · ·∇ω +∇ ·H+ ρQ. (47)

Here symbol “··” has the following sense: ab · ·cd = (b · c)(a · d). Using expression (31) for the kinetic
energy density and the balance equations (41), (44), (45), we transform the energy balance equation (47) to
the form

ρ
δU

δt
= τ T · ·(∇v +E× ω̃

)
+ μT · ·∇ω̃ +TT · ·∇ω +∇ ·H+ ρQ. (48)

If the supply of energy of “non-mechanical nature” is ignored, i. e. the body under consideration is assumed
to be isolated, then Eq. (48) takes a more simple form:

ρ
δU

δt
= τ T · ·(∇v +E× ω̃

)
+ μT · ·∇ω̃ +TT · ·∇ω. (49)

Below we consider only isolated bodies. Furthermore, we are going to derive equations of dynamics,
expressions for strain tensors, and constitutive equations in the framework of the geometrically linear theory.

3.5 Linear theory of elastic medium

Let us consider the tensor P̃(r, t) (rotation tensor of carrier bodies) and the tensor P(r, t) (rotation tensor of
rotors). We assume that in the reference configurations the tensors P̃(r, t) and P(r, t) are equal to the unit
tensor. Therefore, upon the linearization near the reference position they take the form

P̃(r, t) = E+ϕ(r, t)×E, P(r, t) = E+ θ(r, t)×E, (50)

whereϕ(r, t), θ(r, t) are the rotation vector fields of carrier bodies and rotors, respectively. Kinematic relations
(29) in the linear approximation are

v =
du

dt
, ω̃ =

dϕ

dt
, ω =

dθ

dt
. (51)

The mass balance equation (37) in the linear approximation takes the form

dρ

dt
+ ρ∇ · v = 0 ⇒ ρ = ρ∗

(
1−∇ · u). (52)

Here, ρ∗ is the mass density per unit volume in the reference position. Note that the mass density at the initial
time instant ρ0 may not coincide with the mass density in the reference position ρ∗. These two quantities are
related to each other by the formula

ρ0 = ρ∗
(
1−∇ · u0

)
, (53)

and they coincide only if the material medium is not deformable at the initial time instant.
In view of the above simplifications, the equation of motion of the material continuum (41), (44) can be

rewritten in the form

∇ · τ + ρ∗f = ρ∗
d

dt

(
v +Bω

)
, ∇ · μ+ τ× + ρ∗m = ρ∗

d

dt

(
I(0)∗ · ω̃), (54)

where inertia tensor I(0)∗ is calculated in the reference configuration. The equation of motion of the rotors (45)
takes the form

∇ ·T+ ρ∗L = ρ∗
d

dt

(
Bv + Jω

)
, (55)
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and after simple transformations the equation of energy balance (49) is written as follows:

ρ∗
dU

dt
= τT · ·dε

dt
+ μT · ·dκ

dt
+TT · ·dϑ

dt
, (56)

where the strain tensors ε, κ, ϑ are introduced into consideration. These tensors are calculated by the formulas

ε = ∇u+E× ϕ, κ = ∇ϕ, ϑ = ∇θ. (57)

In what follows we consider the elastic material i. e. a material whose density of internal energy and the
tensors of force and moment stresses depend only on the strain tensors and do not depend on velocities. For
the elastic material the Cauchy–Green relations follow from the equation of energy balance (56):

τ = ρ∗
∂U

∂ε
, μ = ρ∗

∂U

∂κ
, T = ρ∗

∂U

∂ϑ
. (58)

To close the system of differential equations, it is necessary to express the internal energy as a function of the
strain tensors

ρ∗U = ρ∗U(ε,κ,ϑ). (59)

Now we consider the physically linear theory and, therefore, we represent the density of internal energy in the
following form:

ρ∗U = τT
0 · ·ε+ μT

0 · ·κ+TT
∗ · ·(ϑ − ϑ∗) +

1

2
ε · · 4C1 · ·ε+ ε · · 4C2 · ·κ+

1

2
κ · · 4C3 · ·κ+

+ ε · · 4C4 · ·(ϑ− ϑ∗) + κ · · 4C5 · ·(ϑ− ϑ∗) +
1

2
(ϑ− ϑ∗) · · 4C6 · ·(ϑ− ϑ∗). (60)

The coefficients τ 0, μ0 and T∗ are called the initial stresses. Coefficients of the quadratic form (60) are called
the stiffness tensors. In the linear theory, the stiffness tensors do not depend on time. The only restriction
imposed on the stiffness tensors is concerned with the requirement of positive definiteness of the quadratic
form (60). The structure of the stiffness tensors and the values of the coefficients of elasticity are determined
by the physical properties of the material medium.

After substituting the expression for the density of internal energy (60) in the Cauchy–Green relations (58),
we obtain the following constitutive equations:

τT = τ T
0 + 4C1 · ·ε+ 4C2 · ·κ+ 4C4 · ·(ϑ− ϑ∗),

μT = μT
0 + ε · · 4C2 +

4C3 · ·κ+ 4C5 · ·(ϑ− ϑ∗),

TT = TT
∗ + ε · · 4C4 + κ · · 4C5 +

4C6 · ·(ϑ− ϑ∗). (61)

According to Eqs. (61), all stress tensors can depend on all strain tensors. It means, in particular, that the moment
stress tensor of rotors can depend not only on their relative orientation, but also on the relative orientation and
relative position of the carrier bodies.

3.6 The simplest theory of one-rotor gyrostats continuum

We consider the material continuum (see Fig. 3) that consists of one-rotor gyrostats of the kind (26)–(28).
In limits of linear theory, the motion of this continuum is described by Eqs. (51), (52), (54), (55), (57), (61).
Free space between the gyrostats is filled up by body-points whose structure coincides with the structure of
rotors belonging to the gyroststs [see Eqs. (15), (16)]. The body-points in the space between the gyrostats are
the elementary particles of a continuum which will be called the “thermal ether” in what follows. In fact, the
material continuum represented in Fig. 3 is a two-component medium. We are not going to study in detail the
motion of the body-points continuum (“thermal ether”) and the interaction between the gyrostats continuum
and the body-points continuum. We consider only the gyrostats continuum as an object under study. The
interaction between the carrier bodies of the gyrostats and the interaction between rotors of the gyrostats are
characterized by tensors of the force and moment stresses (61). The body-points continuum (“thermal ether”)
positioned in the space between gyrostats is considered to be an external factor with respect to the continuum
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Fig. 3 Elementary volume of continuum interacting with environment

under study. That is why we will model the influence of the “thermal ether” on the gyrostats by an external
moment in the equation of the rotors motion (55).

Accepting two important hypotheses, we consider a special case of the linear theory of one-rotor gyrostats
continuum.

Hypothesis 1 Vector L (the mass density of external actions on the rotors of gyrostats) is a sum of the moment
Lh characterizing external actions of all sorts and the moment of linear viscous damping

Lf = −β(Bv + Jω). (62)

The moment (62) characterizes the influence of the “thermal ether”. The structure of the moment is chosen
in accordance with the results of solving some model problems. Discussion of these problems is beyond the
scope of the paper. Now we explain the physical meaning of the moment of linear viscous damping (62). Let
us remind that the one-rotor gyrostat is an approximate model of the quasi-rigid body (see Fig. 1). We suppose
that the rotors of the quasi-rigid bodies interact with body-points of the “thermal ether” and this interaction
is described by the elastic moments analogous to the moments characterizing the interaction of the rotors
with each other. The “thermal ether” having infinite extent, it carries energy of the oscillating rotors away.
The solution of modelling problems reveals that in the case of an infinite surrounding medium the dissipative
moment arising due to the interaction with this medium is proportional to the proper angular momentum vector
(dynamic spin).

Hypothesis 2 The moment stress tensor T characterizing the interactions between rotors is the spherical tensor

T = TE. (63)

In view of assumptions (62) and (63), the equation of the rotors motion (55) takes the form

∇T − ρ∗β (Bv + Jω) + ρ∗Lh = ρ∗
d

dt

(
Bv + Jω

)
, (64)

In view of assumption (63), the last term on the right-hand side of the energy balance equation (56) can be
reduced to a more simple form. By using the notation ϑ = trϑ, the energy balance equation (56) is written as

ρ∗
dU

dt
= τT · ·dε

dt
+ μT · ·dκ

dt
+ T

dϑ

dt
. (65)

The material medium under consideration being elastic, we obtain from Eq. (65), the Cauchy–Green relations
of which the first and the second ones coincide with the first and the second relations of (58), respectively, and
the third one has a simpler form:

τ = ρ∗
∂U

∂ε
, μ = ρ∗

∂U

∂κ
, T = ρ∗

∂U

∂ϑ
. (66)

According to Eq. (65), the density of internal energy is a function of arguments ε, κ and ϑ. Let us construct
the physically linear theory based on representation of the internal energy density in the following form:

ρ∗U = τ 0 · ·ε+ T∗ (ϑ− ϑ∗) +
1

2
ε · · 4C1 · ·ε+ Υ tr ε (ϑ− ϑ∗) +

1

2
K(ϑ− ϑ∗)2. (67)
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Then the constitutive equations (61) take the form

τ T = τT
0 + 4C1 · ·ε+ Υ (ϑ− ϑ∗)E, μ = 0, T = T∗ + Υ tr ε+K(ϑ− ϑ∗). (68)

Thus, the simplest linear theory of the material continuum consisting of one-rotor gyrostats is described by
Eqs. (51), (54), (57), (64), (68).

3.7 Temperature and entropy

Let us consider the foregoing mathematical model of elastic continuum of one-rotor gyrostats. Suppose that the
model describes the behavior of the classical medium which possesses not only elastic properties but also the
viscous and thermic properties. Now we can give a thermodynamic interpretation of the variables describing
motion and interaction of the rotors and next we can carry out identification of parameters of the model and
well-known thermodynamic constants.

Let us consider the energy balance equation (65). Conceive that Eq. (65) is the equation of energy balance
for classical moment medium (medium without rotors). Then the last term on the right-hand side of Eq. (65)
can be treated as thermodynamical one. The physical quantities T and ϑ acquire the meaning of temperature
and volume density of entropy, respectively.

It is evident that the dimensions of the temperature and the entropy defined by formula (65) are different
from the dimensions of those in classical thermodynamics of the present simple case. This problem can be
solved by introduction of a normalization factor:

T = aTa, ϑ =
1

a
ϑa. (69)

Here, a is the normalization factor; Ta is the absolute temperature measured by a thermometer; ϑa is volume
density of the absolute entropy. Let us introduce the similar relations for the remaining variables:

θ =
1

a
θa, ω =

1

a
ωa, Lh = aLa

h, Lf = aLa
f . (70)

Now rewriting all equations for new variables and using new parameters

Ba =
B

a
, Ja =

J

a2
, Υa =

Υ

a
, Ka =

K

a2
(71)

we can eliminate the normalization factor a from these equations at least in the linear formulation of the
problem and in some particular cases of physical nonlinearity.

4 Linear theory of thermoviscoelasticity

4.1 Hyperbolic type thermoelasticity

The classical theory of thermoelasticity is a momentless one. Therefore, considering the problem of thermoe-
lasticity in the context of the proposed model we assume only the force interaction between carrier bodies of
the gyrostats and only the force action of external factors upon them:

μ = 0, m = 0. (72)

In the static problems from the second equation of (54) under the assumption (72), it follows that τ× = 0.
In the dynamic problems the stress tensor can be nonsymmetric in spite of assumption (72). In this case,
it is necessary to take into account the dependence of the strain tensor ε on the angle of rotation of carrier
bodies ϕ. Thus, assumption (72) does not imply transition to the momentless theory of elasticity for carrier
bodies. In addition, let us assume that I(0)∗ = 0. In this case tensor τ will be symmetric both in the static and
dynamic problems and all equations concerned with rotational motions of the carrier bodies of gyrostats can
be excluded.
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Applying the linear theory is admissible in certain range of temperatures and entropy densities changing
about some reference values T ∗

a and ϑ∗
a. Let us introduce deviations of the temperature and the density of

entropy from their reference values:

Ta = T ∗
a + T̃a, ϑa = ϑ∗

a + ϑ̃a. (73)

Further derivation of the basic equations of the linear theory of elastic medium consisting of one-rotor
gyrostats includes the dynamic equations (54), (64) which under notations (69), (70), (71), (73) take the form

∇ · τ + ρ∗f = ρ∗
d

dt

(
v +Baωa

)
,

∇T̃a − ρ∗β (Bav + Jaωa) + ρ∗La
h = ρ∗

d

dt

(
Bav + Jaωa

)
,

(74)

the mass balance equation (52), the kinematical and geometrical relations (51), (57) which under notations
(69), (70) and condition of symmetry of the stress tensor are reduced to

ρ = ρ∗ (1− ε), v =
du

dt
, ωa =

dθa

dt
,

ε =
1

2

(∇u+∇uT
)
, ε = tr ε, ϑa = trϑa = ∇ · θa,

(75)

and the constitutive equations (68) which under notations (69), (70), (71), (73) and condition of symmetry of
the stress tensor are written as

τ =
(
Kad − 2

3
G
)
εE+ 2G ε+ Υa ϑ̃a E, T̃a = Υa ε+Ka ϑ̃a, (76)

where Kad is the adiabatic modulus of compression (the adiabatic bulk modulus), and G is the shear modulus.
Let us compare the system of equations (74)–(76) with the classical equations of the coupled problem of

thermoelasticity. The classical equations have the form, see e. g. [5], [6]

∇ · τ + ρ∗f = ρ∗
d2u

dt2
, τ =

(
Kiz − 2

3
G
)
εE+ 2G ε− αKiz T̃a E,

ΔT̃a − ρ∗cv
λ

dT̃a

dt
=

αKizT
∗
a

λ

dε

dt
− ρ∗q

λ
, ε =

1

2

(∇u+∇uT
)
, ε = tr ε.

(77)

Here, q is the time rate of heat energy supply per unit of mass, cv is the specific heat at constant volume, λ is
the heat-conduction coefficient, Kiz is the isothermal modulus of compression (the isothermal bulk modulus),
α = 3α∗ is the volume coefficient of thermal expansion, whereα∗ is the linear coefficient of thermal expansion.
As a rule, values α∗ for solids and values α for fluids can be found in the handbooks. The isothermal bulk
modulus and the adiabatic bulk modulus are related by

Kad = Kiz
cp
cv

, cp − cv =
α2KizT

∗
a

ρ∗
⇒ Kad = Kiz +

α2K2
izT

∗
a

ρ∗cv
, (78)

where cp is the specific heat at constant pressure.
Comparison of the dynamic equations. It is easy to see that the first equation in (74) and the first equation

in (77) coincide under the condition Ba = 0. Now let us assume that Ba = 0. In what follows we return to
this question and consider the general situation.

Comparison of the constitutive equations. For convenience of comparison, we transform the first equation
in (76) eliminating the entropy from it with the help of the second equation in (76). As a result we obtain:

τ =
(
Kad − Υ 2

a

Ka
− 2

3
G
)
εE+ 2G ε+

Υa

Ka
T̃aE. (79)
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Comparing Eq. (79) with the second equation of (77) we conclude that these equations coincide if

Υ 2
a

Ka
= Kad −Kiz,

Υa

Ka
= −αKiz. (80)

Upon solving Eqs. (80) under condition (78), we obtain the following expressions for constants Ka and Υa:

Ka =
T ∗
a

ρ∗cv
, Υa = −αKizT

∗
a

ρ∗cv
. (81)

Comparison of the heat conduction equations. Now we take the divergence of both sides of the second
equation of (74) and transform the equation obtained by using Eqs. (75), (76). As a result we get

ΔT̃a − ρ∗βJa
Ka

dT̃a

dt
− ρ∗Ja

Ka

d2T̃a

dt2
= βρ∗

(
Ba − ΥaJa

Ka

)
dε

dt
+ ρ∗

(
Ba − ΥaJa

Ka

)
d2ε

dt2
− ρ∗∇ · La

h. (82)

Comparing the heat conduction equation (82) with the third equation in (77), we conclude that in the case of
Ba = 0 these equations agree within the terms containing the second time derivatives if

βJa
Ka

=
cv
λ
,

βρ∗ΥaJa
Ka

= −αKizT
∗
a

λ
, ∇ · La

h =
q

λ
. (83)

From the first equation of (83) by using Eq. (81) we obtain

βJa =
T ∗
a

ρ∗λ
. (84)

In this case, the second equation in (83) is satisfied identically.
Comparison with the phonon theory. The coefficient of the second time derivative of the temperature in

the heat conduction equation (82) is concerned with the velocity of propagation of the thermal wave cr:

c2r =
Ka

ρ∗Ja
. (85)

Within the framework of the classical theory, the quantity cr can not be determined. Therefore, for identification
of the parameter, it is necessary to carry out the comparison with the phonon theory.

Version 1 According to the data of [7] (p. 141) and [8] (p. 19), velocity of the thermal wave propagation cr is
related to velocity of the longitudinal acoustic wave propagation ca by

cr =
ca√
3
. (86)

The velocity of the longitudinal acoustic wave propagation is calculated as follows:

c2a =
Kad + 4G/3

ρ∗
. (87)

Taking into account the relations between Kad, G and other constants (Young’s modulus E and Poisson’s
ratio ν) we obtain

Kad =
E

3(1− 2ν)
, G =

E

2(1 + ν)
⇒ c2a =

3Kad(1− ν)

ρ∗(1 + ν)
. (88)

Formula (86) is valid for the lattice whose Poisson’s ratio is ν = 1/4. In the case of momentless theory from
Eqs. (86), (88) we have

c2r =
3Kad

5ρ∗
. (89)

Using Eqs. (84), (85), (89) and expression for Ka (81), we obtain the following formulas for Ja and β:

Ja =
5T ∗

a

3ρ∗cvKad
, β =

3cvKad

5λ
. (90)
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Version 2 According to the data of [9] (p. 215), the phonon velocity is defined by the group velocity of the
longitudinal acoustic waves in a lattice:

cr = ca ⇒ c2r =
Kad + 4G/3

ρ∗
. (91)

From Eqs. (81), (84), (85), (91) we find the following expressions for Ja and β:

Ja =
T ∗
a

ρ∗cv(Kad + 4G/3)
, β =

cv(Kad + 4G/3)

λ
. (92)

We emphasize the fact that expressions (81) for parameters Ka and Υa and expression (84) for βJa are always
valid, while expressions (90), (92) for parameters Ja and β are valid only in the case of Ba = 0.

A comparison of the equations describing dynamics of the one-rotor gyrostat continuum with the classical
equations of the coupled problem of thermoelasticity has shown that in the case of Ba = 0 these equations are
only distinguished by the existence of inertial terms in the rotor dynamics equation and the absence of inertial
terms in the classical heat conduction equation. Thus, in the case of Ba = 0, the proposed equations can be
treated as the hyperbolic type equations of thermoelasticity.

4.2 Model of internal damping

There exist different macroscopic and microscopic models of internal damping. At present, however, vis-
coelasticity is not a well-developed science for the treatment of thermodynamical and dissipative phenomena.
The point of view that internal damping is concerned with thermal effects is widespread, see e. g. [10]. When
an acoustic wave propagates, the distribution of phonons is in a local thermodynamical equilibrium, i. e. the
temperature changes adiabatically. Consequently, regions separated by the half-wavelength distance from one
another have different temperatures and the irreversible heat flow between these regions arises as a result of
heat conduction phenomena. This process causes transfer of the energy of the mechanical vibrations into heat
energy. Now we do not call in question the idea about interplay of the internal damping and thermal effects.
We emphasize that analysis of the experimental values of the volume (acoustic) viscosity of various substances
shows that the volume viscosity is the independent substance characteristic which is not related to the heat-
conduction coefficient and other thermodynamical parameters. This means that we should not consider the
nature of the acoustic viscosity to be directly connected with heat conduction mechanism. Let us emphasize
that discussing the internal damping we mean only the volume (acoustic) viscosity. In our opinion, the shear
viscosity has an absolutely different nature and it is not discussed here.

Let us consider the energy dissipation caused by the heat conduction phenomena. It is well-known that this
energy dissipation takes place only in the case when the process is not isothermal and not adiabatic. Now let us
consider the energy dissipation caused by the viscosity. This energy dissipation always takes place including
the case of adiabatic process. Proceeding from this fact, we assume that dissipation is caused only by viscosity
and the process is adiabatic, i. e. the volume density of entropy is constant:

ϑa = ϑ∗
a = const ⇒ ϑ̃a = 0 ⇒ T̃a = Υa ε. (93)

When the comparison of the equations describing the dynamics of one-rotor gyrostat continuum with the
classical equations of thermoelasticity has been carried out we assumed that Ba = 0. Now we reject this
restriction. We suppose that the terms containing parameter Ba are concerned with the internal damping
mechanism. In order to argue in favour of this hypothesis, we consider the heat conduction equation (82). Let
us transform this equation by using adiabatic condition (93). As a result, we obtain

Υa Δε− ρ∗βBa
dε

dt
− ρ∗Ba

d2ε

dt2
= −ρ∗∇ · La

h. (94)

It is easy to see that Eq. (94) contains a dissipative term. This dissipative term is in no way concerned with the
heat conduction phenomena.

In order to clarify the physical meaning of the coefficients in Eq. (94), we put a stop to the discussion of
the proposed model and consider the motion of a viscous fluid in which the pressure obeys the Stokes law. The
liquid state (in the case of no external mass forces) is described by the following equations:

∇p = ρ∗
dv

dt
, p = ηv

dε

dt
, (95)
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where ηv is the volume (acoustic) viscosity. From Eqs. (95) we obtain the relation between the flow of matter
ρ∗v and the volume strain gradient

ηv∇ε = ρ∗v. (96)

By taking the divergence of both sides of Eqs. (96), we obtain the self-diffusion equation which can be
generalized by adding the source term ρ∗Ψ in it:

ηvΔε− ρ∗
dε

dt
= −ρ∗Ψ. (97)

Comparing Eq. (94) with the self-diffusion equation (97), we find these two equations to be equivalent with
the only difference that the former contains the inertial term if

Υa

βBa
= ηv,

1

βBa
∇ · La

h = Ψ. (98)

From the first equation of (98) by using the second equation of (81), we get

βBa = −αKizT
∗
a

ρ∗cvηv
. (99)

As evident from Eq. (99), parameter Ba is negative for finite values of the volume viscosity ηv and is equal to
zero when ηv → ∞.

In order to clarify the physical meaning of the obtained result we now consider the dissipative term in
Eq. (74) for the rotors dynamics

ρ∗La
f = −βρ∗(Bav + Jaωa). (100)

Upon substituting expressions for parameters (84), (99) into Eq. (100) we get

ρ∗La
f =

αKizT
∗
a

cvηv
v − T ∗

a

λ
ωa. (101)

Let us calculate the power of the dissipative moment (101):

ρ∗La
f · ωa =

αKizT
∗
a

cvηv
v · ωa − T ∗

a

λ
ωa · ωa. (102)

The second term in expression (102) is dissipative. When the heat-conduction coefficient decreases then
the dissipation increases. The first term in expression (102) determines the process which under the certain
conditions can become inverse to dissipative one. In particular, in the isothermal case, the inequalityv ·ω a > 0
is valid and, therefore, the first term in expression (102) determines process of the energy supply from the
thermal ether. When the volume viscosity decreases then the energy supply in the body from the thermal ether
increases.

Let us transform Eq. (102) by separating the total squares in it:

ρ∗La
f · ωa =

λα2K2
izT

∗
a

4η2vc
2
v

v · v − T ∗
a

λ

(
ωa − λαKiz

2ηvcv
v

)2

. (103)

It is easy to see that the second term in expression (103) determines the dissipative process and the first term
characterizes the process of the energy supply from the thermal ether. The first term is inversely as the square
of the viscosity. Therefore, when the volume viscosity decreases then the supply of energy of the thermal ether
into the body increases. The second term defining the dissipative process also depend on the volume viscosity.
As a result the energy interchange between the body and the thermal ether depends on the volume viscosity
in a complicated manner. Thus, the volume viscosity characterizes the natural ability of a substance to absorb
the energy of the thermal ether. Will this ability be realized? It depends on other properties of the substance
and external circumstances. The volume viscosity of gases is very small and therefore gases possess a good
ability to absorb the energy of the thermal ether. Therefore, the gas particles are in a state of intense motion
in spite of the energy dissipation caused by the heat conduction phenomena. The volume viscosity of fluids
(even inviscid fluid) is much greater than the volume viscosity of gases. The volume viscosity of solids is so
great that it can be considered to approach infinity. In this case, parameter Ba is negligible. Thus, the problem
of thermoelasticity is admissible for solids while for fluids and gases it is important to take into account the
terms dependent on the volume viscosity.
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4.3 Generalized Fourier law

The classical derivation of the heat conduction equation is based on applying the Fourier law which relates
heat flow and temperature gradient. In the proposed model, the counterpart of the Fourier law follows from
the second equation in (74).

Let us consider the energy balance equation in integral form (46). The term
∫
(S)

Tn · ω dS on the right-

hand side of this equation expresses the power of moment acting on the rotors of the gyrostats in the control
volume V produced by the rest of the continuum. Let us introduce the notation

hn = Tn · ω. (104)

A quantity hn can be treated as the rate of supply of the rotor interaction energy through the bounding surface
S of the control volume V .

By the standard reasoning we now introduce the concept of vector h of the rotor interaction energy flow.
According to the Stokes rule, the rate of the energy supply hn through the bounding surface is expressed in
terms of the energy flow vector h as

hn = n · h. (105)

Thus, in our opinion, the vector h defined by Eqs. (104) and (105) can be treated as the heat flow vector.
Taking into account the definition of the rotors moment stress tensor Mn = n ·M and using the fact that

the tensor M is spherical we transform expression (104) as follows:

hn = Tn · ω = n ·T · ω = n · TE · ω = n · (Tω) = n · (Ta ωa). (106)

Upon comparing Eq. (105) with Eq. (106) in view of an arbitrary choice of a normal n we arrive at the
conclusion:

h = Ta ωa. (107)

Substituting the expression for vector ωa = h/Ta into the second equation of (74) and carrying out some
transformation within the framework of the linear model we obtain

β−1 d

dt

(
h+

T ∗
aBa

Ja
v

)
+ h+

T ∗
aBa

Ja
v =

T ∗
a

ρ∗βJa

(∇Ta + ρ∗ Lh

)
. (108)

Substitution of expressions for parameters (84), (99) into Eq. (108) gives

β−1 d

dt

(
h+

λαKizT
∗
a

ηvcv
ρ∗v

)
+ h+

λαKizT
∗
a

ηvcv
ρ∗v = λ

(∇Ta + ρ∗Lh

)
. (109)

Equation (109) is the counterpart and generalization of the Fourier law. Time derivatives in Eq. (109) being
neglected we get

h+
λαKizT

∗
a

ηvcv
ρ∗v = λ

(∇Ta + ρ∗Lh

)
. (110)

We emphasize two important differences between Eq. (110) and the classical Fourier law. First, Eq. (110)
contains the term characterizing the external thermal action. Second, Eq. (110) contains the term depending on
the flow of matter so that the expression on the left-hand side of Eq. (110) is the generalized heat flow which
consists of the true heat flow h and the thermo-diffusion flux. Thus, Eq. (110) not only expresses the Fourier
law but also describes the Soret effect (see e. g. [11], [12]) stating that the temperature gradient causes the flow
of matter.

We pay attention to the fact that the generalized heat flow (108) contains not only the heat flow and the flow
of matter but also their time derivatives. The similar generalization of the transport equations can be found e.g.
in [13]. The presence of the time derivatives of the flows in the transport equations reflects the fact that the
body responds to appearance of the temperature gradient not instantly and possesses certain relaxation time
due to inertance of the body. Coefficient β−1 of the derivative of the generalized heat flow is the relaxation
time scale. Taking into account the fact that the generalized heat flow contains the term depending on the flow
of matter it is hard to say whether the parameter β−1 can be identified with the heat flow relaxation time scale
or whether it is a generalized characteristic of the relaxation time scales of the heat flow and the flow of matter.
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4.4 Internal damping in the ideal gas

Now, we consider the problem of propagation of the acoustic waves in the ideal gas. Since the acoustic speed
is much greater than “the speed of heat propagation” the terms containing derivatives with respect to space
coordinates in the heat conduction equation [see the second equation of (74)] can be neglected. In addition we
take into account the fact that for macroscopic scale level the inertia terms are negligible. As a result we have

ωa ≈ −Ba

Ja
v ⇒ ϑ̃a ≈ −Ba

Ja
ε ⇒ T̃a ≈

(
Υa − BaKa

Ja

)
ε. (111)

The second and the third equations in (111) are obtained by using Eqs. (75), (76). Substituting Eq. (111) into
the first equations in (74), (76) and carrying out some reductions we get

(
Kad − ΥaBa

Ja

)
Δε = ρ∗

(
1− B2

a

Ja

)
d2ε

dt2
. (112)

The acoustic speed in the ideal gas is well-known to be calculated as

c2a =
Kad

ρ∗
≡ T ∗

a cp(cp − cv)

cv
. (113)

At the same time, according to Eq. (112), the acoustic speed in the ideal gas is determined by the formula

c2a =
Kad − ΥaBa/Ja
ρ∗(1− B2

a/Ja)
, Υa = − Kiz

ρ∗cv
≡ −T ∗

a (cp − cv)

cv
, (114)

where expression for Υa is obtained from Eqs. (81) by using the fact that for the ideal gas α = 1/T ∗
a . Upon

comparing Eq. (113) with Eqs. (114), we conclude that for the ideal gas the parameter Ba is determined as
follows:

Ba =
Υa

Kad
≡ − 1

ρ∗cp
. (115)

Now we consider a self-diffusion in the ideal gas. A diffusion process being slow, the inertia term in the
first equation of (74) can be neglected. Then in the case f = 0, the first equation in (74) takes the form
Δpe = 0, where pe is the elastic pressure. Then in accordance with Eqs. (76) the following relations between
the temperature and the volume strain are valid:

ΔT̃a ≈ −KaKiz

Υa
Δε,

dT̃a

dt
≈ −KaKiz

Υa

dε

dt
. (116)

Let us neglect the inertia terms in the heat conduction equation (82) and reduce this equation by using relations
(116). As a result, we obtain

Δε−
[
ρ∗βJa
KaKiz

(
Kiz +

Υ 2
a

Ka

)
− ρ∗βBaΥa

KaKiz

]
dε

dt
=

ρ∗Υa

KaKiz
∇ · La

h. (117)

Next we substitute into Eq. (117) the expressions of the model parameters (81), (84), (99) which are valid for
a substance in all aggregative states and also the relations α = 1/T ∗

a and Kiz = ρ∗T ∗
a (cp−cv) which are valid

for the ideal gas. Now we have

Δε−
[
ρ∗cp
λ

− ρ∗(cp−cv)

cvηv

]
dε

dt
= − ρ∗

T ∗
a

∇ · La
h. (118)

In the case of the ideal gas, the self-diffusion equation is well-known

D∗Δε− dε

dt
= Ψ, D∗ =

λ

ρ∗cv
, (119)
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where D∗ is the self-diffusion coefficient obtained theoretically from the molecular-kinetic theory, see e. g.
[14], [15], [16]. Comparing the self-diffusion equations (118) and (119) we obtain the following value of the
volume viscosity of the ideal gas:

ηv =
λ

cv
. (120)

According to the molecular-kinetic theory, the volume viscosity of the monoatomic ideal gas is equal to zero.
The volume viscosity of the diatomic and polyatomic ideal gas is non-zero but much smaller than the shear
viscosity. Formula (120) contradicts these facts. However, we emphasize that it is very difficult to determine
the volume viscosity of a gas experimentally since the heat transfer and the mass transfer interact with each
other.

Now we determine the parameterβ for the ideal gas taking into account Eqs. (115), (120) and using relation
(99) for βBa which is valid for gases, however it was obtained for the viscous fluids. As a result, we obtain

β =
Kad

ηv
≡ cvKad

λ
. (121)

Next we determine parameter Ja for the ideal gas using expression (121) and relation (84) for βJa which is
valid for fluids and gases, however it was obtained for solids. As a result, we obtain

Ja =
1

ρ2∗ cp(cp−cv)
. (122)

Thus, in the case of the ideal gas as well as in the case of the solids all parameters of the model have been
obtained. However, unlike for solids the parameters of the ideal gas are determined unambiguously.

4.5 Physical meaning of the relaxation time scale

In the disscussion of the generalized Fourier law the parameter β−1 was shown to be a relaxation time scale.
However, the physical meaning of the parameter β−1 remains not entirely clear. The object of this section is
to clarify the meaning of the parameter β−1 by applying the reasoning which is not concerned with the heat
flow vector and the Fourier law and is based on reduction of the dynamics equation to the standard form for
the classical continuum without a microstructure.

Now we consider Eqs. (74) of dynamics of the one-rotor gyrostat continuum. The first equation in (74)
differs from the dynamics equation of the classical continuum by the term containing the vector ωa. Let us
reduce system (74) to eliminate the vector ωa from the first equation of the system. To this end, we express the
derivative of ωa from the first equation in (74) and substitute it into the time derivative of the second equation
in (74). As a result, we obtain the equation relating the absolute temperature with the quantities characterizing
the stress–strain state of the continuum:

d

dt

(
∇ · τ + ρ∗f − ρ∗

[
1− B2

a

Ja

]
dv

dt

)
+ β

(
∇ · τ + ρ∗f − ρ∗

[
1− B2

a

Ja

]
dv

dt

)
=

Ba

Ja

d

dt

[∇T̃a + ρ∗La
h

]
.

(123)
Solving Eq. (123) for the quantity enclosed in brackets we get

∇·
[
τ − Ba

Ja

∫ t

0

dT̃a(τ)

dτ
e−β(t−τ)dτ E

]
+ρ∗

[
f − Ba

Ja

∫ t

0

dLa
h(τ)

dτ
e−β(t−τ)dτ

]
= ρ∗

(
1− B2

a

Ja

)
dv

dt
. (124)

Let us introduce the notations

τ̂ =

(
1− B2

a

Ja

)−1 [
τ − Ba

Ja

∫ t

0

dT̃a(τ)

dτ
e−β(t−τ)dτ E

]
,

F =

(
1− B2

a

Ja

)−1 [
f − Ba

Ja

∫ t

0

dLa
h(τ)

dτ
e−β(t−τ)dτ

]
. (125)
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Next we write down Eq. (124) upon using notations (125)

∇ · τ̂ + ρ∗ F = ρ∗
dv

dt
, (126)

Equation (126) can be considered as the dynamics equation of the classical continuum without a microstructure
where τ̂ is the stress tensor andF is the mass density of the external action. Due to the presence of relaxation term
in the stress tensor τ̂ [see Eq. (125)] we can interpret the above theory as the theory of thermoviscoelasticity.

In mathematical models of viscoelastic solids, as a rule, the relaxation terms depend on the strain rate but
not on the time rate of temperature change. It is easy to show that under the adiabatic condition (93) expression
(125) for τ̂ takes a form which is typical for the model of viscoelastic solid:

T̃a = Υa ε ⇒ τ̂ =

(
1− B2

a

Ja

)−1 [
τ − BaΥa

Ja

∫ t

0

dε(τ)

dτ
e−β(t−τ)dτ E

]
. (127)

At first sight Eq. (127) seems to allow one to interpret the parameter β−1 as the relaxation time of the viscous
stresses. Detailed analysis reveals that it is not true. Indeed, in the case Ba = 0 the relaxation terms in
Eqs. (125), (127) vanish and the theory of thermoviscoelasticity converts to the theory of thermoelasticity. The
parameter β−1, as evident from Eq. (99), is not equal to zero under both presence and absence of the viscous
stresses. Therefore Eqs. (125), (127) do not give grounds to interpret parameter β−1 as the relaxation time of
the viscous stresses.

Thus, β−1 can be considered either as the heat flow relaxation time or as a combination of the heat flow
relaxation time and the relaxation time of the viscous stresses. In theory of rheological models, as a rule, in
order to calculate the reciprocal of resultant relaxation time it is necessary to sum up the reciprocals of all
relaxation times. Conforming to this rule, we suppose that β−1 being a combination of the relaxation times is
calculated as

1

β−1
=

1

τh
+

1

τv
, (128)

where τh is the heat flow relaxation time and τv is the relaxation time of the viscous stresses.

4.6 Parameters of the proposed model for solids, fluids and gases

We have obtained formulas (81), (84), (99) relating the parameters of proposed model with the known ther-
modynamical constants, which are valid for solids, fluids and gases. In the cases of the solid and the ideal
gas we succeeded in determining all parameters of the model. For solids Ba = 0 and quantities Ja and β are
calculated by either (90) or (92) depending on the method of determination of velocity of phonons (heat-waves)
propagation. For the ideal gas quantitiesBa, β and Ja are calculated correspondingly by formulas (115), (121),
(122). In the case of viscous fluid we do not have enough equations to determine all parameters of the model.
This problem can be solved by the assumption that the formulas relating the parameters of proposed model
with known thermodynamical constants must be the same for substances in all aggregative states. For the
solids two versions of determination of the parameters having been proposed. Therefore, two corresponding
versions should be considered in general.

Version 1 Let us assume that the quantities Ja and β for solids are calculated by formulas (90). In order to
bring to conformity the formula for parameter β in the case of solids (90) with the formula for parameter β in
the case of the ideal gas (121) we rewrite the latter in the equivalent form

β =
3cvKad

5λ
+

2Kad

5ηv
. (129)

It is easy to see that when the volume viscosity ηv tends to infinity then expression (129) coincides with formula
(90). Thus, formula (129) is valid for both the ideal gas and solids. Let us suppose that this formula is valid
also for the viscous fluid. Then formula (129) turns out to be valid for a substance in all aggregative states.
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Comparing Eq. (129) with Eq. (128) we see that it is reasonable to define the relaxation times of the heat flow
and viscous stresses as

τh =
5λ

3cvKad
, τv =

5ηv
2Kad

. (130)

We notice that Eqs. (130) are interesting only from the theoretical point of view. To carry out practical
calculations we need only formula (129).

Now using Eqs. (84), (99), (129), we obtain the following expressions for parameters Ba and Ja:

Ba = − 5αT ∗
aλ

ρ∗cp(2λ+ 3cvηv)
, Ja =

5T ∗
a ηv

ρ∗Kad(2λ+ 3cvηv)
. (131)

It is not difficult to show that when the volume viscosity ηv tends to infinity, Ba vanishes and Ja coincides
with the quantity determined by Eq. (90). In addition, we observe that when ηv = λ/cv then parameters Ba

and Ja coincide with their values determined by Eqs. (115), (122). Thus we establish that expressions (131)
include the formulas obtained above for solids and the ideal gas as the special cases.

Version 2 Let us assume that the quantities Ja and β for solids are calculated by formulas (92). It is easy to
see that in the case of the ideal gas Eqs. (121), (122) for Ja and β are the special cases of Eqs. (92). Now we
suppose that formulas (92) are valid also for the viscous fluid. Then using expression (92) for β and expression
(99) for βBa we obtain the following formula for Ba:

Ba = − λαKizT
∗
a

ηv ρ∗c2v(Kad + 4G/3)
. (132)

It is not difficult to see that Eq. (132) vanishes in the case of solids when ηv → ∞ and it turns into expression
(115) in the case of the ideal gas when ηv = λ/cv, α = 1/T ∗

a . Thus we establish that formulas (92) for Ja and
β and formula (132) for Ba are valid for substances in all aggregative states.

From the formal point of view, both variants of determination of the parametersBa, Ja and β−1 are equally
admissible since all these formulas were deduced with the same degrees of strictness. The physical meanings
of the constants obtained above are essentially different.

4.7 Thermoelastic and thermodynamic forces

The foregoing considerations reveal that upon introducing viscous stresses the first equation in (74) can be
reduced to the form which is standard for the classical continuum without microstructure. Deficiency of this
approach is that it can be realized only in the case of the linear theory. Now we consider an alternative method
of reduction of the dynamic equation to the standard form. The advantage of this method is in the possibility
to apply it in the case of the nonlinear theory.

It is well-known that an arbitrary vector can be represented in terms of the scalar and vector Helmholtz
potentials. We use this representation for the dynamic term containing the vector ωa on the right-hand side of
the first equation of system (74):

−ρ∗Ba
dωa

dt
= ∇p+∇× t, ∇ · t = 0. (133)

Here p is the scalar potential, t is the vector potential. Let us rewrite the first equation of (74) by using notation
(133):

∇ ·
(
τ + τ∗

)
+ ρ∗f = ρ∗

dv

dt
, τ∗ = pE+E× t. (134)

Equation (134) is the dynamic equation of the continuum consisting of the ordinary classical particles (point
masses) whose interaction is characterized by the stress tensor τ̃ = τ + τ∗. At first sight, the fact that the
momentum balance equation (134) contains the antisymmetric part of the stress tensor E × t seems to be
strange. Indeed, it was a priori assumed that in the angular momentum balance equation the moment stress
tensor and external distributed moment are equal to zero [see Eqs. (72)] and also the inertia tensor I(0)∗ is equal



“Acta_Mech_2010” — 2013/8/23 — 15:40 — page 282 — #22

282 E.A. Ivanova

to zero. Consequently the vector invariant of the stress tensor must vanish. This contradiction can be easy
eliminated by introducing the moment stress tensor μ∗ such that

μ∗ = E× μ, ∇× μ = 2t. (135)

Taking into account the moment stress tensor (135), we write the angular momentum balance equation as

∇ · μ∗ +
(
τ∗

)
× = 0. (136)

This equation is an identity but from the formal point of view it eliminates all contradictions concerned with
the presence of the antisymmetric part of the stress tensor τ̃ .

As follows from the definition of stress tensor τ∗ [see Eqs. (133), (134)] in the static problems, this stress
tensor vanishes. Therefore, in contrast to the tensor of thermoelastic stresses τ , we shall call tensor τ∗ the tensor
of thermodynamic stresses. Quantities p and t will be called correspondingly the thermodynamic pressure and
the thermodynamic stress vector. It is not difficult to see that thermodynamic stresses exist only when Ba �= 0,
i. e. in the case of gases and fluids.

From Eq. (133) upon using Eqs. (75), (76) we obtain the following differential equation for determining
the thermodynamic pressure p:

Δp =
ρ∗BaΥa

Ka

d2ε

dt2
− ρ∗Ba

Ka

d2T̃a

dt2
. (137)

From Eq. (133) by using the second equation of (74), we get the following differential equation for determining
the thermodynamic stress vector t:

β−1 dΔt

dt
+Δt = −ρ∗B2

a

Ja

(
β−1 d

2∇×v

dt2
+

d∇×v

dt

)
+

ρ∗Ba

βJa

d∇×La
h

dt
. (138)

Now we write down all basic equations of the coupled problem of the theory of thermoviscoelasticity for
the classical momentless continuum:

∇ · τ̃ + ρ∗f = ρ∗
dv

dt
, v =

du

dt
, ε =

1

2

(∇u+∇uT
)
, ε = tr ε,

τ̃ =

[(
Kiz − 2

3
G
)
ε− αKiz T̃a + p

]
E+G ε+E× t, Δp =

αKiz

βηv

[
ρ∗

d2T̃a

dt2
+

αKizT
∗
a

cv

d2ε

dt2

]
,

Δt+
1

β

dΔt

dt
= −λαKiz

βcvηv

(
αKizT

∗
a

cvηv

[
d∇×v

dt
+

1

β

d2∇×v

dt2

]
+ ρ∗

d∇×La
h

dt

)
,

ΔT̃a − ρ∗cv
λ

[
dT̃a

dt
+

1

β

d2T̃a

dt2

]
= αKizT

∗
a

(
1

λ
− 1

cvηv

)[
dε

dt
+

1

β

d2ε

dt2

]
− ρ∗∇ · La

h,

(139)
The system (139) has been obtained by using Eqs. (75), (79), (82), (134), (137), (138) and expressions (81), (84),
(99) for the parameters of the proposed model. It is easy to see that the thermodynamic stresses vanish when
ηv → ∞ and the problem of thermoviscoelasticity turns into the hyperbolic type thermoelasticity problem.

4.8 Coupled problem of thermoviscoelasticity

Above we presented the equations of the coupled problem of the momentless theory of thermoviscoelasticity
written down in the form corresponding to the classical continuum. These equations are interesting from the
theoretical point of view. For practical purposes, the original equations (74)–(76) are more convenient. Now
we rewrite these equations upon using expressions for the parameters (81), (84), (99):

∇ · τ + ρ∗f = ρ∗
dv

dt
− β−1αKizT

∗
a

cvηv

dωa

dt
, v =

du

dt
, ωa =

dθa

dt
, ε =

1

2

(∇u+∇uT
)
,

∇T̃a +
αKizT

∗
a

cvηv

(
v + β−1 dv

dt

)
− T ∗

a

λ

(
ωa + β−1 dωa

dt

)
= −ρ∗La

h,

τ =

[(
Kiz − 2

3
G
)
ε− αKiz T̃a

]
E+ 2G ε, ϑ̃a =

ρ∗cv
T ∗
a

T̃a + αKiz ε, ϑ̃a = ∇ · θa, ε = tr ε.

(140)
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It is well-known that the classical problem of thermoelasticity can be split into two independent problems. One
set of equations describes the volume thermoelastic vibrations. Another set of equations describes the shear
vibrations. The proposed statement of the problem of thermoviscoelasticity possesses the same property.

1. The volume thermoviscoelastic vibrations. Now we take the divergence of both sides of the first and
fourth equations of (140) and reduce obtained equations by applying the remaining equations of this system.
As a result we get the closed set of equations for unknown functions ε and T̃a. This equations set describing
the volume thermoviscoelastic vibrations takes the form

(
Kiz +

4

3
G
)
Δε− αKiz ΔT̃a + ρ∗∇·f =

(
ρ∗ − α2K2

izT
∗
a

βcvηv

)
d2ε

dt2
− ρ∗αKiz

βηv

d2T̃a

dt2
,

ΔT̃a − ρ∗cv
λ

[
dT̃a

dt
+

1

β

d2T̃a

dt2

]
= αKizT

∗
a

(
1

λ
− 1

cvηv

)[
dε

dt
+

1

β

d2ε

dt2

]
− ρ∗∇ · La

h. (141)

Let us consider the classical equations of the coupled problem of thermoelasticity (77). Taking the divergence
of both sides of the dynamic equation and after some manipulations we obtain

(
Kiz +

4

3
G
)
Δε− αKiz ΔT̃a + ρ∗∇·f = ρ∗

d2ε

dt2
, ΔT̃a − ρ∗cv

λ

dT̃a

dt
=

αKizT
∗
a

λ

dε

dt
− ρ∗q

λ
. (142)

Comparison of Eq. (141) describing the volume thermoviscoelastic vibrations within the framework of the
proposed model with the classical equations (142) of the volume thermoelastic vibrations reveals the following
facts. The dynamic equation in (141) contains the second time derivative of the temperature. Such a term is
absent in the dynamic equation in (142). The heat conduction equation in (141) contains the second time
derivative of the temperature and the volume strain. Such terms are absent in the heat conduction equation in
(142). If β−1 = 0, then these terms vanish. In this case, the proposed formulation of the problem differs from
the classical one only by the coefficients of the volume strain in the heat conduction equations. In Eq. (141)
this coefficient depends on the volume viscosity whereas in Eq. (142) it does not depend on this parameter.

2. The shear vibrations. Now we take the curl operator of both sides of the dynamics equation of (140) and
eliminate ωa with the help of the heat conduction equation of (140). Integrating the obtained equation over
time yields the following equation for the shear vibrations:

GΔ∇× u+ ρ∗∇× f =

(
ρ∗ − λα2K2

izT
∗
a

βc2vη
2
v

)
d2(∇× u)

dt2
− ρ∗λαKiz

cvηv

∫ t

0

d∇×La
h

dτ
e−β(t−τ)dτ. (143)

The classical equation of the shear vibrations is obtained by taking the curl operator of both sides of the
first equation of (77):

GΔ∇× u+ ρ∗∇× f = ρ∗
d2(∇× u)

dt2
. (144)

It is not difficult to see that in the case of La
h = 0 Eqs. (143) and (144) coincide within the coefficients of the

inertia terms. If β−1 = 0 then Eqs. (143) and (144) coincide identically.

4.9 Calculation of the model parameters for some substances

Two variants of determination of the parameters of the model were proposed above. The purpose of this section
is to calculate the model parameters in accordance with both variants for different substances (gases, fluids
and solids) and to carry out comparison of the results.

Version 1 (based on the assertion that the propagation speed of heat-waves is
√
3 times smaller than the

acoustic speed):

Ba = − 5αT ∗
aλ

ρ∗cp(2λ+ 3cvηv)
, Ja =

5T ∗
a ηv

ρ∗Kad(2λ+ 3cvηv)
, Ka =

T ∗
a

ρ∗cv
, Υa = −αKizT

∗
a

ρ∗cv
,

β−1 =
τhτv

τh + τv
, τh =

5λ

3cvKad
, τv =

5ηv
2Kad

.

(145)
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Table 1 Parameters of proposed model (version 1)

Substance Ba

(
K·m2

N

)
Ja

(
K2·m4

N2

)
Ka

(
K2·m2

N

)
Υa (K)

Ethyl alcohol (g) −2, 26 · 10−2 3, 70 · 10−3 7, 16 −43, 7
Ethyl alcohol (f) −1, 23 · 10−8 2, 73 · 10−13 1, 83 · 10−4 −1, 82 · 102
Carbon bisulfide (f) −1, 16 · 10−7 2, 14 · 10−13 2, 51 · 10−4 −3, 28 · 102
Benzene∗ (f) −5, 46 · 10−8 2, 59 · 10−13 2, 60 · 10−4 −3, 10 · 102
Toluene∗ (f) −5, 57 · 10−8 2, 63 · 10−13 2, 62 · 10−4 −3, 13 · 102
Acetone∗ (f) −1, 12 · 10−7 2, 54 · 10−13 2, 49 · 10−4 −3, 25 · 102
Chloroform∗ (f) −9, 58 · 10−8 3, 50 · 10−13 2, 65 · 10−4 −2, 69 · 102
Tetrachloromethane∗ (f) −4, 33 · 10−7 1, 97 · 10−13 1, 82 · 10−3 −3, 80 · 103
Silver (s) 0 1, 87 · 10−15 1, 24 · 10−4 −7, 57 · 102
Mercury (f) −6, 97 · 10−8 1, 17 · 10−16 1, 80 · 10−4 −8, 44 · 102
Lead (s) 0 1, 10 · 10−14 2, 07 · 10−4 −5, 28 · 102
Lead (f) −7, 91 · 10−8 2, 35 · 10−16 4, 01 · 10−4 −1, 05 · 103

Table 2 Relaxation time scale (version 1)

Substance τh (s) τv (s) β−1 (s) τ∗ (s)
Ethyl alcohol (g) 1, 03 · 10−8 1, 55 · 10−8 6, 19 · 10−9 ∼ 10−10

Ethyl alcohol (f) 1, 38 · 10−13 4, 58 · 10−12 1, 34 · 10−13 —
Carbon bisulfide (f) 2, 45 · 10−13 8, 89 · 10−13 1, 92 · 10−13 1, 43 · 10−13

Benzene∗ (f) 1, 29 · 10−13 1, 09 · 10−12 1, 15 · 10−13 1, 22 · 10−13

Toluene∗ (f) 1, 17 · 10−13 9, 96 · 10−13 1, 05 · 10−13 1, 63 · 10−13

Acetone∗ (f) 1, 35 · 10−13 5, 98 · 10−13 1, 10 · 10−13 1, 36 · 10−13

Chloroform∗ (f) 2, 43 · 10−13 1, 36 · 10−12 2, 06 · 10−13 1, 54 · 10−13

Tetrachloromethane∗ (f) 1, 88 · 10−13 2, 68 · 10−13 1, 10 · 10−13 2, 15 · 10−13

Silver (s) 2, 87 · 10−11 ∞ 2, 87 · 10−11 ∼ 10−11

Mercury (f) 1, 35 · 10−11 1, 59 · 10−13 1, 58 · 10−13 —
Lead (s) 1, 48 · 10−11 ∞ 1, 48 · 10−11 ∼ 10−11

Lead (f) 5, 54 · 10−12 6, 45 · 10−14 6, 37 · 10−14 —

Table 3 Parameters of proposed model (version 2)

Substance Ba

(
K·m2

N

)
Ja

(
K2·m4

N2

)
β−1 (s) τ∗ (s)

Ethyl alcohol (g) −2, 26 · 10−2 3, 70 · 10−3 6, 19 · 10−9 ∼ 10−10

Ethyl alcohol (f) −7, 61 · 10−9 1, 69 · 10−13 8, 30 · 10−14 —
Carbon bisulfide (f) −8, 86 · 10−8 1, 64 · 10−13 1, 47 · 10−13 1, 43 · 10−13

Benzene∗ (f) −3, 67 · 10−8 1, 74 · 10−13 7, 71 · 10−14 1, 22 · 10−13

Toluene∗ (f) −3, 74 · 10−8 1, 77 · 10−13 7, 05 · 10−14 1, 63 · 10−13

Acetone∗ (f) −8, 23 · 10−8 1, 86 · 10−13 8, 09 · 10−14 1, 36 · 10−13

Chloroform∗ (f) −6, 78 · 10−8 2, 48 · 10−13 1, 46 · 10−13 1, 54 · 10−13

Tetrachloromethane∗ (f) −4, 43 · 10−7 2, 01 · 10−13 1, 13 · 10−13 2, 15 · 10−13

Silver (s) 0 8, 21 · 10−16 1, 26 · 10−11 ∼ 10−11

Mercury (f) −3, 59 · 10−6 6, 03 · 10−15 8, 12 · 10−12 —
Lead (s) 0 5, 20 · 10−15 7, 00 · 10−12 ∼ 10−11

Lead (f) −4, 13 · 10−6 1, 23 · 10−14 3, 33 · 10−12 —

Version 2 (based on the assertion that the propagation speed of heat-waves is equal to the acoustic speed):

Ba = − λαKizT
∗
a

ηv ρ∗c2v(Kad + 4G/3)
, Ja =

T ∗
a

ρ∗cv(Kad + 4G/3)
,

Ka =
T ∗
a

ρ∗cv
, Υa = −αKizT

∗
a

ρ∗cv
, β−1 =

λ

cv(Kad + 4G/3)
.

(146)

The parameter values for some substances possessing different thermal and physical properties are given in
Tables 1, 2, 3. The substances list involves gases, fluids and solids. To calculate the parameters of the proposed
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model we used the values of the mechanical and thermodynamical constants taken from [16], [17], [18], [19],
[20], [21], [22], [23]. Since there are no values of the volume viscosity in the listed handbooks we also used
[24] for determination of this quantity and we took ratios of the volume viscosity to the shear viscosity.

For five fluids marked by asterisks in the Tables 1, 2, 3, we failed to find data for determination of the
volume viscosity. Therefore we assumed that values of the volume viscosity of these fluids are approximately
equal to values of their shear viscosity. According to the data of [24], for most of substances the volume
viscosity is indeed approximately equal to the shear viscosity.

Now we proceed to the analysis of numerical results. The values of the parameters Ba, Ja, Ka and Υa are
given in Tables 1, 3. The values of Ba and Ja calculated by formulas (145) are presented in Table 1 and the
values of Ba and Ja calculated by using formulas (146) are offered in Table 3. The formulas for calculation of
Ka and Υa are the same for both versions and therefore values of these parameters are given only in Table 1.
It is obvious from the presented data that the values of parameter Υa are of the same order of magnitude for
all considered substances. The values of parameter Ka have the same order of magnitude for fluids and solids
while values of Ka for gases are three orders greater than for fluids and solids. Depending on the substance
the magnitude of Ba changes within ten orders and the magnitude of Ja changes within thirteen orders. The
values of Ba and Ja calculated by formulas (145) and (146) coincide exactly in the case of gases and differ
less than by a factor two for all fluids with the exception of the liquid metals. In the case of the liquid metals,
the values of Ba and Ja calculated by formulas (145) and (146) differ more than ten times. For solids, the
values of Ja calculated by formulas (145) and (146) differ by several times.

Table 2 contains the values of β−1 and its components τh and τv calculated by formulas (145). Table 2
contains also the values of heat flow relaxation time τ∗ obtained by other authors. Estimation of τ∗ for gases is
taken from [25], estimation of τ∗ for metals in the solid state is taken from [26], [27]. The values of τ∗ for fluids
are taken from [13] where they are presented with reference to [28], [29]. It is clear from the data of Table 2
that the values of τh and τv are approximately equal in the case of all gases and fluids possessing not very
great viscosity and heat conductivity. For liquid metals, the values of τh are two orders greater than the values
of τv. Table 3 contains the values of β−1 calculated by formulas (146). For all substances with the exception
of liquid metals the values of β−1 calculated by formulas (145) and (146) are of the same order of magnitude.
The agreement between the obtained results and data of other authors (see last column of Tables 2, 3) can be
considered as fair since the order of values coincides almost for all substances both in the case of calculating
by formulas (145) and in the case of calculating by formula (146).

We emphasize that only calculation of the relaxation time scale β−1 is significant for practical purposes
since β−1 is the only parameter in Eqs. (140) which remains indeterminate. However, from the theoretical
point of view it is important to determine parameters Ba and Ja. In order that mechanical interpretation of
the equations obtained above would be reasonable, the kinetic energy of proposed model must be a positive
definite quadratic form. The mass density of the kinetic energy can be represented as follows:

K =
1

2
v · v +Ba v · ωa +

1

2
Ja ωa · ωa =

1

2
(v +Ba ωa)

2
+

1

2

(
Ja −B2

a

)
ωa · ωa. (147)

It is clear from Eq. (147) that parameterBa can be positive or negative but Ba and Ja should obey the condition

Ja −B2
a ≥ 0. (148)

Examination of data given in Tables 1, 3 reveals that the condition (148) holds for all substances with the
exception of liquid metals. This implies that either another mechanical model should be applied to describe
the thermoviscoelastic behavior of metals or the experimental values of the volume viscosity of the liquid
metals should be determined more precisely. An argument is that the attenuation coefficient in vibration tests
is obtained from the direct experiments and then the volume viscosity is calculated by using the theoretical
formulas. These formulas are obtained from one of the models of the internal damping. The proposed model of
the internal damping differs from all known models. Therefore the values of the volume viscosity appropriate
for the proposed model may differ from its values presented in the handbooks.

5 Conclusion

A model of two-component continuum is suggested for the account of thermomechanical processes. A mathe-
matical description of this model is developed in the framework of physically and geometrically linear theory.
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In the future, we intend to carry out further development of the theory in two directions. The first one is con-
cerned with consideration of nonlinear effects in the context of the same mechanical model. This is necessary
for describing the behavior of substances in the states near the phase changes and heat-conduction processes
under the circumstances of quickly varying and superhigh temperatures. The second direction deals with mod-
ification of the mechanical model by taking into account the additional degrees of freedom for introducing
the chemical potential and a number of additional physical characteristics of the medium. This is necessary
to describe the phase changes and chemical reactions and also to account for the interaction of the substance
with the electromagnetic field and to describe the thermoelectric and thermomagnetic effects.
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