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Abstract—The aim of the present paper is to construct and study a model of pair moment interaction
between carbon atoms in the two-dimensional graphite lattice. The carbon atom is modeled by a
structure consisting of three rigidly connected mass points located at the vertices of an equilateral
triangle. The interaction between mass points is described by a pair force potential, but the total
interatomic interaction contains moment components owing to the finite size of the structure
modeling the atom. We compute rank 4 tensors characterizing the elastic properties of the graphite
crystal lattice constructed on the basis of our model. We determine lattice stability criteria depending
on the number of coordination spheres taken into account. We show that this model permits
one to ensure stability of the graphite lattice but significantly underestimates the transverse-to-
longitudinal interatomic coupling rigidity ratio. We construct a generalized moment potential that
permits one to obtain a rigidity ratio consistent with experimental data.

DOI: 10.3103/S0025654407050020

1. INTRODUCTION

A well-known problem in modeling lattices with low packing density is that the use of pair potentials
for describing interatomic interactions does not always result in stable lattice models. There are two
alternative approaches to resolve the issue. The first approach is based on the use of multiparticle
potentials [1, 2] and itself has certain difficulties related to the complicated structure of such potentials
and the large number of interaction parameters. The second approach takes into account the moment
contribution into interatomic interaction. In the present paper, we consider an application of the second
approach to the construction of a two-dimensional hexagonal graphite lattice in which atoms (particles)
are modeled as systems of rigidly connected mass points interacting with the mass points of other
particles via pair potentials. For the pair potential we take the Lennard–Jones potential, because it has a
relatively simple physical interpretation. The interaction thus obtained is noncentral and consists of two
components, the force component described by the force vector and the moment component described
by the moment vector. As is shown later, the moment component can introduce additional transverse
rigidity, which can ensure stability of the hexagonal lattice.

This study is based on the theoretical considerations presented in [3] for the case of central interaction.
A generalization of these methods to the case of moment interaction is given in [4] for square lattices
and [5] for hexagonal lattices. There also exist other methods for introducing additional rigidity into the
system. For example, a mechanical model of a carbon nanotube was proposed in [6]. This model uses
elastic rods and springs connecting the atoms to ensure stability of the system. Another approach, based
on the introduction of rotational degrees of freedom for describing the moment interaction, was proposed
in [7].
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Fig. 1.

Fig. 2.

The interaction laws obtained in the present paper can be used in numerical experiments based
on the molecular dynamic method. The results of this study are a step towards the construction of a
universal form of the interaction potential for carbon atoms, which can be used to describe various carbon
structures.

2. INTERACTION BETWEEN PARTICLES OF SPECIAL FORM
The graphite lattice has symmetry of order 3 (symmetry under rotation by 2π/3) with respect to

each lattice point. The three-dimensional image of the graphite lattice structure is shown in Fig. 1.
For a model of the carbon atom we take the simplest system satisfying the above symmetry, i.e., three
mass points forming an equilateral triangle. The triangle is assumed to be absolutely rigid; namely, its
dimensions and shape remain unchanged, but it can perform translational as well as rotational motions.
Consider a system of two identical atoms-triangles whose edges face each other. The system is shown
in Fig. 2. The mass points belonging to different triangles interact via pairwise central forces. For two
particles, there are nine couplings between the mass points constituting these triangles. Only four of
them are shown schematically by springs in Fig. 2; the other couplings can be obtained from these on the
basis of the symmetry of the configuration. The corresponding distances are denoted by ri (i=1, 2, 3, 4).
The distance between the centers of mass of the triangles in the equilibrium configuration is denoted
by r0. We introduce the angles α and β as shown in Fig. 2.

The interaction between the mass points forming the particles can be described by a pair interaction
potential Π(r). For specific computations, we use the Lennard–Jones potential

Π(r) = D
[( ρ

r

)12

− 2
( ρ

r

)6]

, (2.1)

where D is the interaction energy and ρ is a parameter characterizing the interaction magnitude. The
potential (2.1) is the simplest model interaction potential at the atomic level; it gives a good description
of the asymptotics of the interatomic interaction as particles move away from each other and contains
only two parameters.
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The coupling rigidities i = 1, 2, 3, 4 are determined by the formulas

Ci = Π′′(r)|r=ri
. (2.2)

We introduce the effective particle size l equal to the distance from the center to the vertices of the
triangle. Then the system in question contains three independent parameters of the dimension of length,
namely, the equilibrium distance r0 between the particles, the effective particle size l, and the interaction
magnitude ρ. From these parameters, we proceed to the dimensionless parameters

ζ =
l

r0

(the relative particle size), η =
ρ

r0

(the relative interaction range). (2.3)

Using the model geometry (see Fig. 2), we obtain

r1 = r0(1 − ζ), r2 = r0

√

1 + ζ + ζ2,

r3 = r0

√

(1 − ζ)2 + 3ζ2, r4 = r0(1 + 2ζ).
(2.4)

The horizontal projection of the total forces acting on a particle (see Fig. 2) gives

2f(r1) + 4f(r2) cos α + 2f(r3) cos β + f(r4) = 0. (2.5)

Here f(r) = −Π′(r) is the interaction force. Equation (2.5) implies the following relation between the
dimensionless parameters introduced above:

η6 =

1

(1 − ζ)7
+

2 + ζ

(1 + ζ + ζ2)4
+

1 − ζ

[(1 − ζ)2 + 3ζ2]4
+

1

2(1 + 2ζ)7

1

(1 − ζ)13
+

2 + ζ

(1 + ζ + ζ2)7
+

1 − ζ

[(1 − ζ)2 + 3ζ2]7
+

1

2(1 + 2ζ)13

. (2.6)

3. STABILITY OF THE TWO-PARTICLE SYSTEM

Under the assumption that the displacements and rotations of particles are small, we represent the
strain energy of the system as a quadratic form of the strains [4]:

U =
1

2
ε ·A · ε + ε · B · κ +

1

2
κ ·C · κ. (3.1)

Then the interaction force and moment are computed by the formulas

F = A · ε + B · κ, M = ε ·B + C · κ. (3.2)

Here ε and κ are the strain vectors,

ε
def
= r− r0 +

1

2
r0 × (ϕ1 + ϕ2), κ

def
= ϕ2 − ϕ1. (3.3)

where r = r2 − r1 is the vector connecting the particle centers of mass, r0 is the value of r in equilibrium,
ϕ1 and ϕ2 are the vectors of small rotation of particles, and the coefficients A, B, and C are the coupling
rigidity tensors. In the linear theory, the rigidity tensors are constant and can be calculated by the
formulas [4]

A = −
∑

k,n

Ψ(ξ0

kn), B =
1

2

∑

k,n

Ψ(ξ0

kn) × (ρk + ρn),

C =
1

2

∑

k,n

[ 1

2
r0 × Ψ(ξ0

kn) × r0 + ρk × Ψ(ξ0
kn) × ρn + ρn × Ψ(ξ0

kn) × ρk

]

,

(3.4)

where ξ0
kn is the difference between the absolute position vectors of mass points belonging to different

particles in the initial configuration and ρn and ρk are the position vectors of interacting mass points
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determined in equilibrium with respect to the particle centers. The tensor Ψ(ξ) is determined on the
basis of the interaction force,

Ψ(ξ)
def
=

d

dξ
f(ξ) = 2Φ′(ξ2)ξξ + Φ(ξ2)E,

f(ξ) = Φ(ξ2
kn)ξkn, Φ(ξ2

kn)
def
= − 1

ξkn
Π′(ξkn).

(3.5)

Here Π is the interaction potential (in the present paper, we use the Lennard–Jones potential), and f is
the interaction force. In the case under study, the system has two orthogonal planes of symmetry, and
therefore, the rigidity tensors can be represented in the form

A = A11ii + A22jj, B = 0, C = C33kk, (3.6)

where the vectors i, j, k form an orthonormal basis such that the vectors i, j lie in the plane of the
triangles and k is perpendicular to this plane. We assume that the vector i is directed along r0. By
summing all interactions between the mass points forming the triangles, we find the rigidities of the
couplings between the triangles:

A11 = 2C1 + C4 + 4C2 cos2 α + 2C3 cos2 β − (4Φ2 sin2 α + 2Φ3 sin2 β),

A22 = 4C2 sin2 α + 2C3 sin2 β − (2Φ1 + Φ4 + 4Φ2 cos2 α + 2Φ3 cos2 β),

C33 =
1

4
A22r

2
0 + (C1 − C4 + 2C2 − 2C3)l

2 +
1

2
l2(C1 + Φ1) + l2(C4 + Φ4)

+ (C3 + Φ3)l
2(cos β −

√
3 sin β)2 − 2l2(C2 + Φ2) cos2 α,

Ci
def
= Π′′(ri), Φi

def
= − Π′(ri)

ri
,

(3.7)

where ri are the distances between the mass points in the reference configuration and the angles α and β
between the couplings are defined in Fig. 2.

The system stability condition is the positive definiteness of the quadratic form (3.1). This condition
is satisfied provided that the inequalities

A11 > 0, A22 > 0, C33 > 0 (3.8)

hold. By substituting (3.7) into (3.8), we obtain a system of inequalities for the parameters ζ and η.
Further, by eliminating η from this system by formula (2.6), we obtain some restrictions imposed by the
stability condition on the relative particle size ζ . As a result, by numerically solving the inequalities thus
obtained, we manage to show that system (3.8) can be reduced to the inequality A22 > 0, which implies
the following stability condition for the two-particle system:

ζ < ζmax = 0.2303935. (3.9)

Thus, the stability condition for the two-particle system implies an upper bound for the relative particle
size; this bound is approximately as follows:

l < 0.23r0. (3.10)

4. STABILITY OF A GRAPHENE LAYER.
THE NEAREST NEIGHBOR APPROXIMATION

Consider a two-dimensional graphite lattice (graphene layer) formed by particles of the special shape.
If only the interaction between nearest neighbors is taken into account, then the equilibrium equation
leads to formula (2.5) and the distance between nearest neighbors in the lattice is equal to the distance
between the centers of triangles in the system considered in the preceding section. Therefore, the relation
between the size of and the distances between the triangles, obtained for two particles, can also be used
for infinite sets of particles forming the graphene layer.

For a linear Cosserat continuum, the strain energy density can be represented as a quadratic form of
the strain tensors [5]:

W =
1

2
εT ·· 4A ·· ε + εT ·· 4B ·· κ +

1

2
κT ·· 4C ·· κ, (4.1)
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Fig. 3.

where W is the energy per unit volume, A, B, and C are the force, cross, and moment rigidity tensors,
and ε and κ are the tension-shear and bending-torsion strain tensors determined by the formulas

ε
def
= ∇u + E × ϕ, κ

def
= ∇ϕ, (4.2)

in which u and ϕ are the displacement and rotation of a medium element and E is the unit tensor. We
note that in the preceding section the symbols ε and κ were used to denote different strains, namely,
vector strains realized at the microlevel.

The two-dimensional layer under study has rotation symmetry of order 3, and hence the correspond-
ing elastic material is isotropic. Then the rigidity tensors can be written as [5]

4A = A1J1 + A2J2 + A3J3,
4B = 0, 4C =

√
3C(ikki + jkkj), (4.3)

where

J1

def
= ekekenen, J2

def
= ekenenek, J3

def
= ekeneken (4.4)

are isotropic tensors of rank 4, summation over repeated indices k and n is performed from 1 to 2, e1 = i,
and e2 = j. The coefficients Ak for the case in which only neighboring particles interact in the crystal
lattice (Fig. 3) were obtained in [5]:

A1 =

√
3

12
r2
0

[

A − D +
(A − D)2

A + D

]

,

A2 =

√
3

12
r2
0

[

A + 3D − (A − D)2

A + D

]

,

A3 =

√
3

12
r2
0

[

A − D − (A − D)2

A + D

]

.

(4.5)

The longitudinal and transverse rigidity coefficients A and D and the torsional rigidity C are related to
the above rigidities of interaction between the particles-triangles as follows:

Ar2
0 = A11, Dr2

0 = A22; , C = C33. (4.6)

The material stability criterion is the positive definiteness of the quadratic form (4.1). Each summand
in the quadratic form is independent, and hence we obtain the following two conditions:

εT ·· 4A ·· ε > 0, κT ·· 4C ·· κ > 0. (4.7)
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We represent the strain tensors in the form

ε = εxxii + εxyij + εyxji + εyyjj, κ = κxzik + κyzjk. (4.8)

By substituting the first formula in (4.8) into (4.7), we obtain the inequality

A1(ε
2
xx + ε2

yy + 2εxxεyy) + A2(ε
2
xx + ε2

yy + ε2
xy + ε2

yx) + A3(ε
2
xx + ε2

yy + 2εxyεyx) > 0, (4.9)

where A1, A2, A3 are given by (4.5). This implies the four independent conditions

A2 > 0, A2
2 − A2

3 > 0, A1 + A2 + A3 > 0, (A1 + A2 + A3)
2 − A2

1 > 0. (4.10)

It follows from the stability conditions for a system of two interacting particles that the parameters A
and D characterizing the longitudinal and transverse interaction rigidities are positive. Then the four
inequalities in (4.10) are reduced to the two inequalities

A > D, D > 0. (4.11)

Numerical analysis shows that the first of these inequalities is satisfied for any ζ . The second inequality
can be reduced to the above inequality for the transverse rigidity of the coupling between the particles-
triangles: A22 > 0. Thus, the microscopic consideration (the stability of two interacting particles) and the
macroscopic consideration (the positive definiteness of the material strain energy) give the same results
in the nearest neighbor approximation.

We take the second formula in (4.8) and substitute it into (4.7). This gives the condition

C(κ2
xz + κ2

yz) > 0, (4.12)

which is satisfied for all positive C = C33.

5. SECOND-ORDER NEIGHBORS

The stability condition obtained above coincides with (3.8) and implies an upper bound for the
particle size depending on the distance between the particles. The lower bound is zero. This means
that infinitely small triangles, i.e., mass points, can be used. But, as a rule, the use of mass points as a
model of particles cannot ensure stability of the lattice. The cause is that remote (second- and higher-
order) neighbors are located on the unstable part of the “interaction force–distance” diagram, where
the corresponding coupling rigidities are negative. At the same time, the couplings between nearest
neighbors in the graphite lattice do not form a rigid structure; the lattice can be deformed with the lengths
of these couplings remaining unchanged. For such deformations, stability is determined by the rigidities
of further couplings, and since these couplings are negative, the material becomes unstable. Thus, it
is insufficient to take into account only the nearest neighbors, because remote neighbors significantly
affect the stability of the system. Consider the atoms belonging to the second coordination sphere. They
lie at the distance b =

√
3r0 of the given atom (Fig. 3). We assume that the shear rigidity of the coupling

with the remote neighbors is insignificant owing to their remoteness. Then the interaction with remote
neighbors can be treated as interaction between mass points. The force balance equation has the form

f̃1(r0) + 2
√

3f̃2(
√

3r0) = 0, (5.1)

where f̃1(r0) is the sum of all actions on the first coordination sphere. It coincides with the left-hand
side of Eq. (2.5) for r = r0. The term f̃2(

√
3r0) is responsible for the interaction with remote neighbors.

Solving Eq. (5.1), we obtain the following relation (similar to (2.6)) for the case under study:

η6 =

1

33
+

1

(1 − ζ)7
+

2 + ζ

(1 + ζ + ζ2)4
+

1 − ζ

[(1 − ζ)2 + 3ζ2]4
+

1

2(1 + 2ζ)7

1

36
+

1

(1 − ζ)13
+

2 + ζ

(1 + ζ + ζ2)7
+

1 − ζ

[(1 − ζ)2 + 3ζ2]7
+

1

2(1 + 2ζ)13

, (5.2)
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Using the approach proposed in [5], where the coefficients Ak are determined for the nearest
neighbors, we find the rigidity tensors for our case:

A1 =

√
3

12
r2
0

[

A − D + 18B +
(A − D)2

A + D + 6B

]

,

A2 =

√
3

12
r2
0

[

A + 3D + 18B − (A − D)2

A + D + 6B

]

,

A3 =

√
3

12
r2
0

[

A − D + 18B − (A − D)2

A + D + 6B

]

,

(5.3)

where B < 0 is the coupling rigidity coefficient for second-order neighbors. Now we use (5.2) to obtain
stability conditions in the same way as in the case of nearest neighbors. Solving the inequalities (4.10)
numerically in the case of the Lennard–Jones potential, we obtain

ζmin < ζ < ζmax, ζmin = 0.0820795, ζmax = 0.2240461. (5.4)

Thus, the material stability condition gives a two-sided constraint on the relative particle size, which can
be written as

0.082r0 < l < 0.224r0, (5.5)

where l is the effective particle size and r0 is the distance between the particle centers. Taking into
account remote neighbors has permitted us to obtain a lower bound for the triangle size as well as an
improved upper bound. This means that the suggested model allows one to stabilize the graphite lattice.

6. CONSTRUCTION OF THE GENERALIZED PAIR MOMENT POTENTIAL

The model proposed above permits one to stabilize the two-dimensional graphite lattice but is not
fully consistent with the values of the graphite elastic moduli. According to [4], the ratio of the transverse
rigidity coefficient D to the longitudinal rigidity coefficient A computed from experimental values of the
elastic moduli is equal to 55%. We express the rigidities Ci via the parameter ζ and use (3.7) to construct
the ratio A22/A11. This ratio, which should be equal to D/A, is of the order of 2% within the stability
region (5.5). This dramatic difference forces us to use the above model to construct different models
with the desired rigidity ratio. The following two methods for constructing such models are possible:
one takes another type of particles interacting via classical pair potentials or constructs a generalized
interaction potential allowing for rotational degrees of freedom. In what follows, we consider the second
method, which permits one to obtain a stable hexagonal lattice with a given longitudinal–transverse
rigidity ratio.

Consider the general form of a moment potential capable of forming a hexagonal lattice on the
plane [9, 10]:

U(R, γ, κ) = Π0(r) + Π1(r) sin(nγ) sin(nκ/2). (6.1)

Here n is a parameter characterizing the symmetry order of the particle (n = 3 for graphite), Π0(r) is
a momentless interaction potential of Lennard–Jones type, and Π1(r) is a function of the distance r
between the particles, which should tend to zero for large r. The rotational degrees of freedom are
characterized by the shear angle γ and the relative rotation angle ϕ:

γ = θ − 1

2
(ϕ1 + ϕ2), κ = ϕ2 − ϕ1, (6.2)

where the angles ϕi are responsible for the rotation of the ith particle about its center of mass and θ is the
angle determining the direction of the straight line connecting the particles. All the angles are counted
from some fixed straight line. The interatomic coupling rigidities can be found by the formulas

A11 = U ′′

r , A22 =
1

r2
U ′′

γ , C33 = U ′′

κ , (6.3)

where the derivatives are calculated in the equilibrium r = r0, κ = κ0, γ = γ0.
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Formula (6.1) for the interaction potential was first obtained in [9] with the use of the triangle-atom
model considered above. By expanding the potentials of interaction between the mass points into series
in the small parameter ε = ζ/η = l/ρ, the following formulas were obtained for Π0(r) and Π1(r) in [10]:

Π0 = 9D
[( ρ

r

)12

− 2
( ρ

r

)6]

+ 324D
[

2
( ρ

r

)14

−
( ρ

r

)8]( l

ρ

)2

,

Π1 = 144D
[

−14
( ρ

r

)15

+ 5
( ρ

r

)9]( l

ρ

)3
(6.4)

where l is the characteristic size of the triangle and ρ is the interaction range. We express the known
coupling rigidities via the parameter ζ = l/r0 in the same way as in the preceding sections and obtain
the stability domain

0.092r0 < l < 0.265r0, (6.5)

similar to (5.5), where r0 is the interatomic distance in the equilibrium configuration. By equating the
interaction rigidity ratio to the well-known value for graphite [5, 8],

A11

A22

= 2.1, (6.6)

we determine the relative particle size

ζ = 0.27; (6.7)

i.e., the value of the parameter ζ in this case lies in the stability domain (6.5).
The potential studied in [9] was constructed under the assumption that ε is small, and hence it can be

successfully used in the case of large interatomic distances. But for small distances this approximation
does not work, which leads to various undesirable effects, including loss of stability. In numerical
simulation, for example, by the molecular dynamic method, it is necessary to construct a moment
interaction potential that can be used on the entire range of simulation, from infinitely small to infinitely
large distances between particles.

For the specific form of the potential (6.1) for modeling the graphite lattice, we take the potential

U(r, γ, κ) = D1

[( ρ

r

)12

− 2
( ρ

r

)6]

+ D2

( ρ

r

)m
sin(3γ) sin

( 3κ

2

)

. (6.8)

The coefficient D2 is responsible for the moment contribution into the interaction between the particles.
(For D2 = 0, the potential (6.8) coincides with the Lennard–Jones potential.) The introduction of this
coefficient permits one to omit the dependence of the potential on the particle size. Now let us study
the stability of a system of two neighboring atoms. The radial and transverse components Fr and Fθ of
the force vector and the value MC of the moment vector with respect to the midpoint of the segment
connecting the particles are calculated by the formulas

Fr =
∂U

∂r
, Fθ =

1

r

∂U

∂θ
, MC =

∂U

∂κ
. (6.9)

In an equilibrium, all force components should be zero. Thus, we can calculate the equilibrium angles γ0

and κ0 as well as the equilibrium distance r0 between the particles as a function of the coefficients D1

and D2. The coupling rigidity coefficients can be determined from (6.3). In a stable equilibrium, the
coupling rigidities expressed as functions of D1 and D2 should be positive. In their structure, they are
similar to (3.8), but the coefficients A22 and C33 differ only by a positive factor; therefore, we have only
two rather than three independent stability conditions.

We consider the case m = 12 by analogy with the Lennard–Jones potential. Then

r0 = ρ
(

1 +
D2

D1

)1/6

, (6.10)

The conditions A11, A22 > 0 and relation (6.6) for the rigidities result in the system

D1

D2

= −1.26, D2 < 0, (6.11)
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We assume that the equilibrium distance between the particles is equal to the interatomic distance in the
graphite lattice; then r0 = 0.142 nm. Using formula (6.10), we calculate the parameter ρ of the Lennard–

Jones potential. Knowing ρ and r0 and using the value A11 = 730 N/m [5], from (6.3) and (6.11) we
obtain the parameter values

ρ = 0.184 nm, D1 = 0.266 eV, D2 = −0.210 eV. (6.12)

Thus, we have obtained the potential which, without determining the shape and size of the particles,
allows us to describe stable interaction between carbon atoms in the graphite lattice for various
interatomic distances.

7. CONCLUSION
In the present paper, we present a mechanical model describing a two-dimensional hexagonal crystal

lattice. We show that the pair moment interaction can ensure stability of such a lattice. We find the
stability domain depending on the ratio of the characteristic size of particles of special type to the distance
between them. We also show that the upper bound of the stability domain is related to the stability of
the total atom–particle interaction. The lower bound characterizes the balance between the stabilizing
moment interaction of first-order neighbors and the destabilizing force interaction between second-order
neighbors. This balance is essential for particles of small characteristic size. Thus, this model permits
one to ensure stability of the graphite lattice. But computations show that this model gives a strongly
underestimated value of the transverse-to-longitudinal coupling rigidity ratio. To solve this problem, in
the present paper we propose a generalized moment potential describing the interaction of particles of
general shape, which permits one to deal with a rigidity ratio that is in good agreement with experiments.
The results obtained in this paper can be used in both theoretical computations and computer simulation
of carbon nanosystems.
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