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ABSTRACT: We discuss the effective (apparent) stiffness of a nano- or microsized thin-walled structure con-
sisting of two elastic flexible faces and a capillary fluid between them. We take into account the capillary forces
acting on a free surface of the fluid. These capillary effects play a significant role at the micro- and nanoscales
and influence mechanical properties of such structures. We introduce the effective stiffness parameters of con-
sidered three-layered plate as functions depending on the elastic properties of faces as well as the surface
tension.

1 INTRODUCTION

Capillarity phenomena coupled with deformations of
elastic flexible structures play a significant role in de-
sign of MEMS, medicine, and biology. At the nano-
and microscales such phenomena can be observed
in various flexible structures interacting with fluids
(Madasu & Cairncross 2003, Hazel & Heil 2003,
Grotberg & Jensen 2004, Hazel & Heil 2005, Squires
& Quake 2005, de Langre, Baroud, & Reverdy 2010,
Liu & Feng 2012). In the theory of capillarity there
are two approaches. The first one relates to semi-
nal works (Young 1805) and (Laplace 1805, Laplace
1806) where they introduced a sharp interface with
the surface energy while the second approach was
developed in (Korteweg 1901) and (van der Waals
1893) who suggested to use unified bulk energy den-
sity depending on the second gradient of the mate-
rial density (Rowlinson & Widom 2003, Finn 1986,
dell’Isola & Seppecher 1995, dell’Isola & Seppecher
1997, de Gennes, Brochard-Wyart, & Quéré 2003,
Fried & Gurtin 2006, Rosi, Giorgio, & Eremeyev
2013). Both models lead to complex boundary-value
problems with a priori unknown sharp interface or an

interfacial layer.
In this paper we consider the bending of two elastic

plates with a capillary fluid between them. Capillarity
influences the plates interaction. From the mechanical
point of view the capillary forces acting on the free
surface can be considered as a surface or/and contour
reinforcement. This means that the effective (appar-
ent) stiffness of the structure consisting of two elastic
plates and a capillary fluid depends on the elastic stiff-
ness parameters of the elastic plates as well as on the
fluid-solid interaction and the surface tension.

For derivation of effective stiffness parameters we
use the variational approach replacing the total energy
of the system by the effective one using the first-order
shear deformable theory of plates.

We propose a simple rheological model replacing
the capillary forces by spring-dashpot structures. The
model gives the formulas for the effective stiffness pa-
rameters. We show that the effective bending stiffness
determined almost by the stiffness of the elastic plates
while the transverse shear stiffness depends signifi-
cantly on the boundary reinforcement. Within the pro-
posed framework we analyze the difference between
hydrophobic and hydrophillic fluids.



2 GOVERNING EQUATIONS OF CAPILLARY
FLUID AND ELASTIC PLATE

Let us consider two identical elastic plates with a fluid
layer between them, see Fig. 1. In what follows we
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Figure 1: Two plates with fluid layer

consider the infinitesimal bending and shear of this
structure and the first-order shear deformable theory.
The bending and shear of the plate are described by
the deflection w and the independent rotation vector
ϑϑϑ. For the derivation of the governing equations we
use the variational approach. The functional of the to-
tal energy is given by

E = Epl + Efl, (1)

where Epl is the total energy of the plates and Efl is
the energy functional of the fluid. For Epl we use the
following formula

Epl =
1

2

∫
S

(Γγγγ ·γγγ +κκκ ······ D ······κκκ)dS, (2)

κκκ =
1

2

(
∇ϑϑϑ · A + A · (∇ϑϑϑ)T

)
, γγγ = ∇w−ϑϑϑ.

Here κκκ and γγγ are the second-order tensor of bending
strain and the vector of the transverse shear strain, re-
spectively, A = i1 ⊗ i1 + i2 ⊗ i2 is the 2D unit ten-
sor. In Eq. (2) Γ is the transverse shear stiffness, D
is fourth-order tensor of bending stiffness having the
following form (Altenbach & Eremeyev 2008b)

D = D22(a2 ⊗ a2 + a4 ⊗ a4) +D33a3 ⊗ a3,

a2 = i1 ⊗ i1 − i2 ⊗ i2, a3 = i1 ⊗ i2 − i2 ⊗ i1,
a4 = i1 ⊗ i2 + i2 ⊗ i1.
i1, i2 are the unit base vectors, D22 and D33 are the
stiffness parameters given by

D22 =
1

24

Ef(h
3 − h3

c)

1 + νf
, D33 =

1

24

Ef(h
3 − h3

c)

1− νf
,

where Ef and νf are the Young modulus and the Pois-
son ratio of the plate material, h and hc are the thick-
ness of the two plates and the fluid layer, respectively.
The classical bending stiffness can be computed as
D = D22 +D33.

The surface energy of the fluid is given by (Finn
1986)

Efl =

∫
A

σ
√
1 + |∇sZ|2 dA, (3)

where σ is the surface tension, ∇s is the surface nabla-
operator, Z is the function describing the capillary
meniscus form.

The governing equations with respect to the un-
known functions w,ϑϑϑ and Z can be obtained using the
variational equation δE = 0 supplemented by proper
boundary equations. The corresponding boundary-
value problem is very complicated and cannot be
solved analytically, in general. Instead of the solution
of this problem we assume that Efl can be approxi-
mated as the boundary elastic reinforcement. We as-
sume that Efl takes the form

Efl =
1

2

∫
∂S

(ΓSγγγ ·γγγ +κκκ ······ DS ······κκκ)ds, (4)

where ΓS and DS are the shear stiffness and the tensor
of bending and torsion. In other words, we replace
the functional (3) defined on the 2D field Z by the
functional (4) which is similar to the elastic energy of
the Timoshenko-type beam.

3 EFFECTIVE PROPERTIES

To calculate the effective properties of the considered
structure we introduce the homogeneous plate which
total energy is given by

E∗ =
1

2

∫
S

(Γ∗γγγ ·γγγ +κκκ ······ D∗ ······κκκ)dS,

where Γ∗ and D∗ are the effective stiffness parame-
ters. We assume that D∗ has the same structure as D.
Equating E∗ to E in the case of homogeneous strains
we obtain
(ΓS +ΓSL)γγγ ·γγγ +κκκ ······ (SD +LDS) ······κκκ
= (Γ∗γγγ ·γγγ +κκκ ······ D∗ ······κκκ)S.

(5)

Here S and L are the area and the contour length of
the plate, respectively. From (5) it follows

Γ∗ = Γ+
L

S
ΓS, D∗ = D +

L

S
DS. (6)

Let us note that in (6) the influence of the surface
tension on the stiffness parameters is different. Since
D ̸= 0 it is almost negligible in the case of the bend-
ing stiffness. For the transverse shear stiffness the in-
fluence of the surface tension is more essential. In-
deed, for two plates connected by a fluid layer without
surface tension the effective transverse shear stiffness
is close to zero. Thus the surface tension is essential
when Γ ≈ 0.

We re-write (6)1 as follows

Γ∗ = Γ+ αh with α =
Lh

S
ΓS (7)

α is the coefficient which depends on the surface ten-
sion σ. Taking ΓS = 2σhc we find that

α =
2σLhc

Sh
.



The latter formula relates to the rule proposed by
(Wang, Duan, Huang, & Karihaloo 2006) for the size-
effect in nanomaterials. Indeed, we have the formula

Γ∗

Γ
= 1+

2σLhc

kShµc
,

which coincides with (Wang, Duan, Huang, & Kari-
haloo 2006). Besides, the second term in (7) depends
significantly on the surface tension for plates with
curved contour. Equation (7) describes the averaged
influence of the surface tension.

4 THREE-LAYERED PLATE

Following (Altenbach, Eremeyev, Ivanova, & Moro-
zov 2012) in this section we briefly present another
way of determination of the effective stiffness of the
structure under consideration. Here we use the tech-
nique presented in (Altenbach & Eremeyev 2008a,
Altenbach & Eremeyev 2009) for the case of vis-
coelastic non-homogeneous plates. We assume the
fluid as a standard incompressible viscoelastic solid
with the shear relaxation function

µc = µ∞ + (µ0 − µ∞) exp

(
− t

η

)
,

where µ0 and µ∞ are the viscoelastic moduli, η is the
relaxation time. For the Maxwell fluid µ∞ = 0. Thus,
the case of a classical fluid can be obtained as a limit
case if t→∞.

For the viscoelastic sandwich plate we have the for-
mulas (Altenbach & Eremeyev 2008a, Altenbach &
Eremeyev 2009)

D22 =
1

24

[
Ef(h

3 − h3
c)

1 + νf
+

Ech
3
c

1 + νc

]
,

D33 =
1

24

[
Ef(h

3 − h3
c)

1− νf
+

Ech
3
c

1− νc

]
,

where due to the incompressibility of the fluid
Ec(t) = 3µc(t) and νc = 1/2. The bending stiffness
is given by

D = D22 +D33 =
1

12

[
Ef(h

3 − h3
c)

1− ν2
f

+
Ech

3
c

1− ν2
c

]
. (8)

Since Ec ≪ Ef instead of (8) one can use

D =
1

12

Ef(h
3 − h3

c)

1− ν2
f

. (9)

For the transverse shear stiffness using certain as-
sumptions we obtain the following approximated for-
mula (Altenbach, Eremeyev, Ivanova, & Morozov
2012):

Γ =
26

9
µch. (10)

From (10) it follows that as in the previous model Γ
is almost determined by the fluid properties.

5 RHEOLOGICAL MODEL

For capillary fluids the type the fluid-structure in-
teraction is essential. It depends on the hydrophillic
(wetting) or hydrophobic (dewetting) properties of the
fluid. These properties influences the shape of the
meniscus as well as the adhesion of the fluid and
plates, see Fig 2. Here F stands for the fluid area while
M denotes the meniscus.

a)

b)
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Figure 2: Meniscus shape for hydrophillic (a) and hydrophobic
(b) fluids
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Figure 3: Rheological models for hydrophillic (a) and hydropho-
bic (b) fluids

For the sake of simplicity we consider the fol-
lowing rheological model which demonstrate the dis-
cussed above difference between hydrophobic and
hydrophillic fluids, see Fig. 3. Here we introduce the
Maxwell spring-dashpot rheological element for the
fluid and the standard viscoelastic solid for the cap-
illary surface. We also assume that there is no fric-
tion between fluid and plates. In addition, we intro-
duce two horizontal springs modeling the adhesion



properties of the wetting fluid, see Fig. 3 a). Thus,
we replace the fluid area F and the meniscus M by
the corresponding spring-dashpots. In other words in-
stead of consideration of complex problem for the
capillary fluid with free surface we use simple one-
dimensional model. Within the model the meniscus is
replaced by simple contour reinforcement which de-
scribes qualitatively deformations of a capillary sur-
face. The presented rheological model corresponds
to both presented in Sects 2–4 approaches since the
model takes into account both viscoelastic properties
of the fluid and the surface tension.

As a result, within the framework of the rheolog-
ical model the difference between hydrophobic and
hydrophillic fluids relates to the difference in Γ∗. For
the hydrophillic fluid Γ∗ is bigger than for hydropho-
bic one.

6 CONCLUSIONS

We discussed the effective stiffness of two elastic
plates connected by capillary fluid and analyzed the
influence of the surface tension on the stiffness pa-
rameters. We present few models describing the ac-
tion of surface tension. As a result we have shown that
the surface tension influences significantly the effec-
tive transverse shear stiffness of the whole structure at
the micro- or nanoscale.
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