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INTRODUCTION

At present, the problem of the experimental deter-
mination of mechanical characteristics for nanometer-
size objects (nanoobjects) is urgent. One of the most
efficient methods for the determination of elastic-mod-
uli is based on the measurement of the eigenfrequencies
of objects under study. However, the measurement of
nanoobject frequencies, in particular, on the basis of
optical methods turns out to be problematic [1]. The
main, though not exclusive, limitation upon the appli-
cation of optical methods is the fact that the laser-beam
cross section is not a point but a spot whose diameter is
on the order of the light wavelength. Thus, if the size of
an object under investigation is smaller than the diame-
ter of the laser beam, the measurement results are
meaningless. Meanwhile, the use of optical methods
makes it possible to measure eigenfrequencies for sys-
tems containing microscopic-size substrates (micro-
substrates) and a regular structure of identical nanoob-
jects. As a result, two problems arise that lie at the
interface between mechanics and experimental phys-
ics. The first problem consists in the determination of
the elastic moduli of nanoobjects under conditions in
which the frequencies of a combined system of a
microsubstrate and nanoobjects and of isolated-
microsubstrate elastic properties are known. The sec-

ond problem is associated with the possibility of iso-
lating the nanoobject eigenfrequencies in the micro-
substrate–nanoobject system. The successful solution
of both problems directly depends on the conditions
under which the experiment is performed. Thus, the
role of mechanics consists not only in the interpreta-
tion of experimental data but also in the development
of the theoretical foundations of experimental
approaches and of recommendations related to vari-
ous mechanical aspects of the problem.

In this paper, we propose a method for the determi-
nation of the eigenfrequencies of certain nanostructures
(e.g., nanotubes and nanocrystals). The method is based
on measuring eigenfrequencies of an “extended sys-
tem” consisting of a highly oriented array (lattice) of
identical nanotubes or nanocrystals located on a sub-
strate. Structures of this kind can be obtained as a result
of processes of self-organized growth [2, 3]. As a rule,
the sizes of these nanoobjects in the array are approxi-
mately the same, which makes it possible to use the
macroscopic size of this array to study nanoobject
properties by the determination of first eigenfrequen-
cies for either nanotube–lattice or nanocrystal–sub-
strate systems. We show that, using the found spectrum
of the extended (lattice–substrate) system and the sub-
strate spectrum, it is possible to determine eigenfre-
quencies of the unique nanoobject. This allows us to
determine nanoobject eigenfrequencies on the basis of
data obtained for extended systems.

The fundamental problem that arises in measuring
frequencies of the objects under study, which are fixed
at an elastic substrate, is the oscillation-eigenfrequency
redistribution in the system consisting of the objects
and the substrate between eigenfrequencies of each of
them taken separately. This method is well known in
mechanics [4]. In this case, the character of the spec-
trum shift substantially depends on the relation
between the parameters of both the object under study
and the substrate. Meanwhile, it is well known that, in
distributed-parameter systems consisting of several
bodies, a phenomenon (anti-resonance) exists that con-

 

On the Determination of Eigenfrequencies
for Nanometer-Size Objects

 

V. A. Eremeyev

 

1

 

, E. A. Ivanova

 

2

 

, 

 

Academician

 

 N. F. Morozov

 

3

 

, and A. N. Solov’ev

 

4

 

Received September 27, 2005

 

PACS numbers: 46.40.–f, 68.65.–k

 

DOI: 

 

10.1134/S1028335806020121

 

1

 

 South Scientific Center, Russian Academy of Sciences,
and Rostov State University, 
ul. Zorge 5, Rostov-on-Don, 344090 Russia

 

2

 

 St. Petersburg State Polytechnical University, 
Polytekhnicheskaya ul. 29, St. Petersburg, 
195251 Russia

 

3

 

 St. Petersburg State University,
Bibliotechnaya pl. 2, Stary

 

œ 

 

Peterhof, 198904 Russia

 

4

 

 Donsko

 

œ

 

 State Technical University,
ul. Zorge 5, Rostov-on-Don, 344090 Russia
e-mail: eremeyev@math.rsu.ru; 
ivanova@E15063.spb.edu; morozov@NM1016.spb.edu; 
soloviev@math.rsu.ru

 

MECHANICS



 

94

 

DOKLADY PHYSICS

 

      

 

Vol. 51

 

      

 

No. 2

 

      

 

2006

 

EREMEYEV 

 

et al

 

.

 

sists of the dynamically damping vibrations of one
body at the partial frequency of the other body. This
phenomenon is the basis for the method of measuring
nanoobject eigenfrequencies by means of an atomic-
force microscope. Below, we show that, in systems of a
highly oriented array of identical nanotubes or nanoc-
rystals grown on a substrate, the anti-resonance phe-
nomenon also takes place and can be applied to the iso-
lation of nanoobject eigenfrequencies from the
extended-system spectrum. It is unlikely that the ana-
lytical study of eigenmodes of such a system can be
performed in the framework of the three-dimensional
elasticity theory. Therefore, as the first stage of the
investigation, we consider the rod model of an extended
system, which consists of a horizontal rod modeling a
substrate and vertical rods modeling nanoobjects. For
the rod model, the analysis of eigenmodes for a nanoc-
rystal system is carried out, and the possibility of the
isolation of the nanoobject spectrum from the
extended-system spectrum is proved. At the second
stage, the dynamics of a concrete mechanical system is
numerically analyzed. In the framework of the plane
problem of the elasticity theory, calculations of the lat-
tice frequencies are carried out for the lattice of zinc
oxide microcrystals and nanocrystals on the sapphire
substrate. The calculation results also demonstrate the
possibility of isolating the nanoobject spectrum from
that of the extended system.

THE ANALYTICAL STUDY 
OF THE MODEL PROBLEM

We consider the rod model of an extended system
consisting of both a horizontal rod of length 

 

L

 

 and 

 

N

 

vertical rods each of length 

 

H

 

 fixed at their lower ends
to the horizontal rod and located at the same distance 

 

l

 

from each other so that 

 

L

 

 = (

 

N

 

 + 1)

 

l

 

. Upper ends of the
vertical rods are free, whereas the ends of the horizontal
rod also are rigidly fixed. We introduce the following
notation: 

 

C

 

 and 

 

D

 

 are flexural rigidities of the horizon-
tal and vertical rods, respectively; 

 

ρ

 

1

 

, 

 

ρ

 

2

 

 are the linear
mass densities; 

 

u

 

, 

 

ϕ

 

 = 

 

u

 

'

 

 are the vertical displacement
and the rotation angle of the horizontal rod; 

 

v

 

n

 

, 

 

w

 

n

 

,

 

ψ

 

n

 

 = –

 

v

 

n

 

 are the horizontal and vertical displacements
and the rotation angle for the 

 

n

 

th vertical rod; 

 

T

 

, 

 

M

 

 =

 

Cu

 

"

 

 is the transverse force and the bending moment in
the horizontal-rod cross section; 

 

N

 

n

 

 = –

 

D

 

,

 

 and 

 

F

 

n

 

,

 

L

 

n

 

 = –

 

D

 

 are the transverse and longitudinal forces
and the bending moment in the cross section of the 

 

n

 

th
vertical rod.

The equations of motion for the vertical rods are of
the form

 

(1)

v n'''

v n''

Dv n
IV ρ2v̇̇ n+ 0, wn' 0, Fn' ρ2ẇ̇n.= = =

 

The equations of motion for the horizontal rods can be
written out as

 

(2)

 

The vertical rods are rigidly fixed at the horizontal one
so that the conjugation kinematic conditions are valid:

 

(3)

 

The boundary conditions for the entire system are for-
mulated as

 

(4)

 

The solution to Eqs. (1) describing the motion of the ver-
tical rods in combination with boundary conditions (4) at
free ends of the vertical rods makes it possible to link
forces and displacements in lower points of the rods:

 

(5)

 

where the parameter 

 

g

 

(

 

µ

 

H

 

)

 

 is of the form

Removing the transverse force 

 

T

 

 from Eq. (2) and tak-
ing into account the elasticity relation 

 

M

 

 = 

 

Cu

 

" 

 

and rela-
tionships (3), (5), we reduce the set of Eqs. (2) to the
unique differential equation

 

(6)

 

If the number of vertical rods is sufficiently large, we
can consider them to be continuously distributed along
the horizontal-rod length. Upon averaging the right-
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hand side of Eq. (6), we simplify the mathematical for-
mulation of the problem and reduce it to the equation

The analysis of the above-formulated problem
shows the existence of two groups of solutions. The
first one corresponds to the situation when the vertical
rods move as a cantilever beams. The eigenfrequencies
of system vibrations are determined by the equation

In this case, the vibration amplitudes for the horizontal
rod are small compared to those of the vertical rods.
The second group of solutions corresponds to the situ-
ation when the system vibrates at frequencies close to
those for the system consisting of one horizontal rod.
Here, the vibration amplitudes for the vertical rods are
small compared to those of the horizontal rod.

The comparison of quantities λL and µH here, λ =

 allows us to determine the mutual position of

both the substrate and the nanoobject spectra. The first
eigenfrequencies of the substrate and of the nanoob-
jects correspond to the values λL ~ 1 and µH ~ 1,

respectively. If  � 1, then the first eigenfrequencies

of the nanoobjects are significantly lower than those of

the substrate. If  � 1, then the first eigenfrequencies

of the nanoobjects significantly exceed that of the sub-
strate. The following estimate is true:

where h1 and h2 are the characteristic sizes of cross sec-
tions for the horizontal and the vertical rods, respec-
tively.

Thus, in the case of modeling the extended system
and the substrate in the framework of rod mechanics,
the isolation from the extended-system spectrum of
eigenfrequencies corresponding to the frequency of a
unique nanoobject is possible.

NUMERICAL ANALYSIS OF THE DYNAMICS 
OF A REAL SYSTEM

As an example of a real nanostructure, we consider
the problem of the isolation of eigenfrequencies for a

uIV NDµ
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lattice of zinc oxide (ZnO) microcrystals and nanocrys-
tals. ZnO single crystals are piezoelectrics. By virtue of
their excellent optical and mechanical properties, they
have far-reaching prospects for application in nanoelec-
tronics, nanophotonics, and nanomechanics. In particu-
lar, they are used for constructing UV lasers, sensors of
chemical and biological substances, solar batteries, UV
photodetectors, and other devices. ZnO single nanoc-
rystals are synthesized by different methods, e.g., by
thermal evaporation, chemical deposition from the gas
phase, by pulsed laser spraying, etc. The height and
diameter of the nanocrystals attain 1.5–3 µm and 30–
100 nm, respectively. Microcrystals are 20–100 µm in
height and 1.0–3.0 µm in diameter. From the standpoint
of continuum mechanics, the nanocrystal lattice on a
substrate is a compound piezoelectric solid. The basic
electric-elasticity equations in the electrostatic approx-
imation and in the absence of mass forces are of the
form [5–7]

(7)

(8)

(9)

Here, u is the displacement vector; E is the vector of the
electric-field strength, which is expressed in terms of
the potential ϕ; s is the stress tensor; D is the electric-
induction vector; e is the strain tensor; ∇ is the gradient
operator; ρ is the density; and C, e, and eeee are the rigidity
matrix and the piezoelectric and dielectric constants,
respectively. Below, we restrict our analysis to the case
of a plane problem.

The model analysis of Eqs. (7)–(9) with the corre-
sponding boundary conditions for the ZnO nanocrys-
tals on the sapphire substrate was performed on the

ρ u̇̇ ∇ s, ∇ D⋅⋅ 0,= =

s C · · e e E, D⋅– e e eeee E,⋅+⋅= =

e 1
2
--- u uT∇+∇( ), E ϕ.∇= =

(a)

(b)

Fig. 1. Eigenfrequencies (a) of the substrate and (b) local-
ized in the nanocrystal lattice.
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basis of the ACELAN finite-element program package
[8–10]. The properties of both ZnO single crystals and
the sapphire substrate were taken from [11].

In the numerical experiment, we have found eigen-
frequencies of a cantilever fixed ZnO nanocrystal 1 µm
in height and 0.1 µm thick. The first and second fre-
quencies turned out to be 0.10797 and 0.67763 GHz,
respectively, and correspond to bending vibrations. A
sapphire single crystal of the rectangular shape (10 ×
20 µm) and fixed at one lateral side was considered as
a substrate model. The extended system was modeled
by the above-described sapphire microcrystal with a
sampling of eight identical nanocrystals located on the
upper substrate side. The results of the model analysis

are presented in the table. Missed rows in the second
column are associated with the absence of the corre-
sponding eigenfrequencies for the substrate. Examples
of the shapes of eigenmodes are shown in Fig. 1. Fig-
ure 1a corresponds to the first frequency in the table.
The kinematic analysis of eigenmodes shapes corre-
sponding to the consequent eight eigenfrequencies tes-
tifies to the fact that motions of the extended system are
localized in the nanocrystalline “brush” (Fig. 1b). In
this case, the shape of the nanocrystal vibrations corre-
sponds to the first eigenfrequency of the unique nanoc-
rystal. The vibration frequencies of the nanocrystal
ensemble differ from that of a unique nanocrystal by
less than 4%. The analogous dynamic behavior of the
extended system manifests itself in the vicinity of the
second eigenfrequency of a unique nanocrystal. This is
illustrated in Fig. 2, in which the plateaus of each plot-
ted curve correspond to the eigenfrequencies of the
unique nanocrystal. Here, triangles and rhombi denote
frequencies corresponding to those of the unique
nanocrystal and of the substrate, respectively.

The calculations have shown that the extended-sys-
tem spectrum can be approximately represented as a
combination of substrate eigenfrequencies and fre-
quencies generated by a unique nanocrystal, which is
quite consistent with the results of the rod-model anal-
ysis. Thus, the model proposed makes it possible to
experimentally determine to a high accuracy the first
eigenfrequencies of a unique nanoobject on the basis of
spectra of the lattice–substrate system and of the unique
substrate.
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Table

Eigenfrequencies of the
extended system, GHz

Eigenfrequencies of the
substrate, GHz

0.036494 0.036594

0.103909 –

0.103971 –

0.104039 –

0.104106 –

0.104226 –

0.104322 –

0.104467 –

0.104612 –

0.134652 0.134973

0.136246 0.136017

0.280004 0.280137

n

×10–2, GHz
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