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INTRODUCTION

Experimental determination of the mechanical char-
acteristics of nanoobjects is today a challenging prob-
lem. One of the most efficient methods to determine
elastic moduli in macromechanics is measurement of
the eigenfrequencies of an object. However, attempts to
apply this approach to nanoobjects sometimes face dif-
ficulties. In particular, optical methods used in such
measurements usually fail [1].

The optical measuring procedure is as follows: an
object under study is mounted on a chassis and illumi-
nated by a laser beam, and another laser beam serves to
detect the vibration amplitude at a certain point of the
object. The optical signal is converted to an electric
one, and the spectrogram thus obtained is analyzed
with a spectrometer to determine the eigenfrequencies
of the object. The main, but not the only, factor that lim-
its the domain of applicability of this method is a finite
(rather than indefinitely small) size of the laser beam:
its spot is on the order of the laser wavelength across).
If the object is smaller than the laser spot, the results
make no sense.

Thus, optical methods fail in measuring the eigen-
frequencies of a single nanoobject. However, it seems
possible to measure the eigenfrequencies of a regular
array of identical nanoobjects on a microsubstrate.

Here, two problems lying at the interfaces between
mechanics and experimental physics arise. The first one
is determination of the elastic moduli of nanoobjects
when there is a possibility to measure the frequencies of
the microsubstrate–nanoarray system and determine
the elastic characteristics of the substrate (for example,
from the eigenfrequencies of the free substrate). The
second problem is how to extract the eigenfrequencies
of nanoobjects from the eigenfrequency spectrum of
the substrate–array system. The success in solving both
problems directly depends on the experimental condi-
tions, specifically, on the way nanoobjects are mounted
on the substrate; on how the substrate with nanoobjects
is fixed to the chassis of the measuring device; and on
the geometries, weights, and the elastic properties of
the nanoobjects and the substrate. Thus, from the
mechanical standpoint, one should not only interpret
the measured data, but also elaborate upon the design of
the experiment.

In this study, we suggest a method of determining
the eigenfrequencies of nanostructures (nanotubes and
nanocrystals) from the measured eigenfrequencies of a
large system comprising a highly ordered array of iden-
tical nanotubes or nanocrystals grown on a substrate
(Fig. 1) as a result, e.g., of self-organized growth [2, 3].
Nanoobjects constituting such an array are usually of
the same size; therefore, one can use the macroscopic
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Abstract

 

—A method is proposed to determine the eigenfrequencies of nanostructures (nanotubes and nanoc-
rystals) by measuring the eigenfrequencies of a “large system” that comprises an array of vertically oriented
similar nanotubes or nanocrystals equidistantly grown on a substrate. It is shown that the eigenfrequencies of a
single nanoobject can be derived from the eigenfrequency spectra of the large (array–substrate) system and of
the substrate. In other words, using experimental data for large systems, one can determine the eigenfrequencies
of single nanoobjects, which are difficult to determine otherwise. By way of example, the eigenfrequencies of
an array of zinc oxide micro- or nanocrystals on a sapphire substrate are calculated.
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sizes of the array to study the properties of nanoobjects
by finding the first eigenfrequencies of the nanoob-
jects–substrate system. It is shown that, from the spec-
trum of the large (nanoobjects–substrate) system, the
eigenfrequencies of an individual nanoobject can be
derived; that is, the eigenfrequencies of a single
nanoobject can be determined from experimental data
obtained for the large system.

The main problem arising in measuring the frequen-
cies of nanoobjects mounted on an elastic substrate is
that the eigenfrequencies of the system as a whole are
distributed among its components—a phenomenon
well known in mechanics [4]. The shift of the spectrum
strongly depends on the parameters of the substrate and
object. It is known that, in many-body systems with dis-
tributed parameters, the vibration of one body may be
dynamically damped at the partial frequency of another
body (antiresonance). It will be shown below that sys-
tems of highly ordered arrays of identical nanotubes or
nanocrystals grown on a substrate (Fig. 1) may also
exhibit antiresonance and that this effect can be used to
extract the eigenfrequencies of the nanoobjects from
the spectrum of the large system. The normal modes of
the system shown in Fig. 1 can hardly be analyzed in
terms of the 3D elasticity theory. Therefore, we will
first consider a rod model of the large system where a
horizontal rod represents a substrate and vertical rods
simulate nanoobjects (Fig. 2). In terms of this model,
the normal modes of an array of nanocrystals are ana-
lyzed and the feasibility of extracting their eigenfre-
quency spectrum from the respective spectrum of the
large system is demonstrated.

The array of nanocrystals assumed in this work is to
a great extent similar to micro- and nanocrystals of

semiconducting zinc oxide. Owing to their high
mechanical and physical performance, such crystals are
of considerable interest for nanomechanics and nano-
photonics and can be fabricated by different tech-
niques, pulsed laser evaporation among them [5–7].
Numerical analysis of the dynamics of such an array is
the second stage of this study. The eigenfrequencies of
an array of zinc oxide micro- or nanocrystals on a sap-
phire substrate are calculated in terms of the 2D prob-
lem of the elasticity theory. The calculation results also
indicate the feasibility of extracting the spectrum of
nanoobjects from the spectrum of the large system.

ANALYSIS OF THE MODEL PROBLEM

Let us apply the rod model to a large system consist-
ing of a horizontal rod of length 

 

L

 

 depicting a substrate
and 

 

N

 

 vertical rods of length 

 

H

 

 depicting nanoobjects
(Fig. 2). The lower ends of the vertical rods are rigidly
fixed to the horizontal rod and are spaced 

 

l

 

 apart, so that

 

L

 

 = (

 

N

 

 + 1)

 

l

 

. The upper ends of the vertical rods are
free, the horizontal rod is rigidly fixed at both ends. In
what follows, the problem of free vibrations is solved in
two, discrete and continuum, statements.

 

Discrete Model

 

Assume that the horizontal rod comprises 

 

N

 

 + 1
small rods of length 

 

l 

 

rigidly attached to one another.
The dynamics of such a system is described by the
equations of the classical rod theory,

(1)

where 

 

u

 

n

 

 and 

 

v

 

n

 

 are the vertical and horizontal displace-
ments of 

 

n

 

th horizontal and vertical rods, respectively;

 

C

 

 and 

 

D

 

 are the flexural rigidities of the horizontal and
vertical rods, respectively; and 

 

ρ

 

1

 

 and 

 

ρ

 

2

 

 are the linear
mass densities. The other values characterizing the state
of stress of the rods are given by

(2)

Here, 

 

ϕ

 

n

 

 and 

 

ψ

 

n

 

 are the rotation angles of the rod’s cross
sections, 

 

M

 

n

 

 and 

 

L

 

n

 

 are the bending moments, and 

 

T

 

n

 

and 

 

N

 

n

 

 are the shear forces. The vertical motion of the
vertical rods is described by the equations

(3)

where 

 

w

 

n

 

 are the vertical displacements of an 

 

n

 

th verti-
cal rod and 

 

F

 

n

 

 are longitudinal forces. The kinematic
conditions at the joints between the rods are

(4)

Cun
IV ρ1 u̇̇n+ 0, Dv n

IV ρ2v̇̇ n+ 0,= =

ϕn un' , Mn Cun'', Tn Cun''',–= = =

ψn v n' , Ln– Dv n'', Nn– Dv n'''.–= = =

wn' 0, Fn' ρ2ẇ̇n,= =

un x nl=  = un 1+ x nl= , v n y 0=  = 0, wn y 0=  = un x nl= ,

ϕn x nl= ϕn 1+ x nl= , ψn y 0= ϕn x nl= .= =

 

Fig. 1.

 

 Large system: an array of nanocrystals or nanotubes
on a substrate.

 

Fig. 2. 

 

Rod model.
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The force balance at the joints has the form

(5)

The boundary conditions for the system are given by

(6)

The analysis of the problem revealed two groups of
solutions. The first one corresponds to the situation
when the vertical rods move as cantilever beams. In this
case, the vibration eigenfrequencies of the system can
be determined from the equation

(7)

The vibration amplitudes of the horizontal rods are
small compared to those of the vertical rods. The ratio
of these amplitudes is proportional to a small param-
eter,

(8)

where 

 

h

 

1

 

 and 

 

h

 

2

 

 are the characteristic transverse sizes of
the horizontal and vertical rods, respectively, with

 

h

 

2

 

/

 

h

 

1

 

 

 

� 1.
The second group of solutions meets the situation

when the system vibrates with frequencies close to
those in the system without the vertical rods. In this
case, the equations from which the eigenfrequencies of
the system and the form of horizontal rod vibrations are
found contain two small parameters,

(9)

which distinguish the frequencies and forms of vibra-
tion of the complete system from those of the system
without the vertical rods. The vibration amplitudes of
the vertical rods are small compared to the vibration
amplitudes of the horizontal rods and their ratio is pro-
portional to a small parameter,

(10)

Comparing λL and µH (here, λ = ), one can

determine the mutual position of the spectra of the sub-
strate and nanoobjects. The first eigenfrequencies of the
substrate correspond to λL ~ 1; the first eigenfrequen-
cies of the nanoobjects, to µH ~ 1. If µH/λL � 1, the
first eigenfrequencies of the nanoobjects are consider-
ably lower than those of the substrate; if µH/λL � 1, the

Tn 1+ x nl= Tn x nl=– Fn y 0=+ 0,=

Mn 1+ x nl= Mn x nl=– Ln y 0=+ 0.=

u1 x 0= 0, ϕ1 x 0= 0,= =

uN 1= x L= 0, ϕN 1= x L= 0,= =

Nn y H= 0, Fn y H= 0, Ln y H= 0.= = =

1 µH( ) µH( )coshcos+ 0, µ
ρ2

D
-----4 ω.= =

ρ2D
ρ1C
----------

h2

h1
-----⎝ ⎠

⎛ ⎞
3

,∼

ρ2D
ρ1C
----------

H
L
----

h2

h1
-----⎝ ⎠

⎛ ⎞
3 H

L
----,

ρ2H
ρ1L
----------

h2

h1
-----⎝ ⎠

⎛ ⎞
2 H

L
----,∼ ∼

ρ1D
ρ2C
----------4

h2

h1
-----⎝ ⎠

⎛ ⎞
1/2

.∼

ρ1

C
-----4 ω

situation is reverse. If µH/λL ~ 1, the first eigenfrequen-
cies of the system include the eigenfrequencies of both
the substrate and nanoobjects. The following estimate
is valid:

(11)

All the above asymptotic estimates are made on the
assumption that Young’s moduli and the volume mass
densities of the nanoobjects and substrate are of the
same order of magnitude.

Continuum Model

Let us now assume that the horizontal rod is a single
whole with the vertical rods rigidly mounted on it.
Then, the kinematic conditions at the joints appear as

(12)

Solving Eqs. (1) and (3) of motion for the vertical
rods subject to boundary conditions (6) at their free
ends yields a relationship between the forces and dis-
placements at the lower points of the rods,

(13)

where parameter g(µH) is given by

(14)

The equations of motion for the horizontal rod have
the form

(15)

Eliminating shear force T and using the relationship
of elasticity M = Cu'', one can reduce Eqs. (15) to a sin-
gle differential equation,

(16)

With regard to expressions (12) and (13), Eq. (16)
takes the form

(17)

µH
λL
--------

h2

h1
-----⎝ ⎠

⎛ ⎞
1/2 H

L
----.∼

v n y 0=  = 0, wn y 0=  = u x nl= , ψn y 0=  = ϕ x nl= .

Fn y 0=  = ρ2Hẇ̇n y 0= , Ln y 0=–  = 
Dµ

g µH( )
----------------ψn y 0= ,

g µH( ) = 
1 µH( ) µH( )coshcos+

µH( ) µH( )coshsin µH( ) µH( )sinhcos–
------------------------------------------------------------------------------------------------.

T' Fn y 0= δ x nl–( )
n 1=

N

∑+ ρ1 u̇̇,=

M' T Ln y 0= δ x nl–( )
n 1=

N

∑+ + 0.=

CuIV ρ1 u̇̇+

=  Fn y 0= δ x nl–( ) Ln y 0= δ' x nl–( )–[ ].
n 1=

N

∑

CuIV ρ1 u̇̇+

=  ρ2Hu̇̇δ x nl–( ) Dµ
g µH( )
----------------u'δ' x nl–( )+ .

n 1=

N

∑–
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If the number of vertical rods is sufficiently large,
they may be assumed to be continuously distributed
over the length of the horizontal rod. Averaging the
right-hand side of Eq. (17), we simplify the problem,
reducing it to the equation

(18)

The analysis of the continuum model showed that
respective solutions can be divided into two groups, as
in the case of the discrete model. The first type includes
the vibrations at the frequencies defined by (7). In this
case, according to (12), the condition ψn|y = 0 = 0 is met;
the vertical rods move as cantilever beams; and the
vibration amplitudes of the horizontal rod are much
smaller than those of the vertical rods. The second
group of solutions embraces vibrations with frequen-
cies close to the eigenfrequencies of the horizontal rod.
Here, the vertical rods vibrate with amplitudes much
smaller than those of the horizontal rod.

From the above considerations, it follows that, when
the large system is treated in terms of the rod model, the
eigenfrequencies of an individual nanoobject can be
extracted from the spectrum of the whole system.

DYNAMICS OF THE NANOCRYSTAL ARRAY: 
NUMERICAL ANALYSIS

As an example of studying a real nanostructure, let
us determine the eigenfrequencies of an array compris-
ing ZnO micro- and nanocrystals. Owing to their high
optical and mechanical properties, piezoelectric ZnO
single crystals hold much promise for nanoelectronics
and nanophotonics, in particular, for the production of
UV lasers, chemical and biological sensors, solar cells,
UV detectors, and other devices. Currently, ZnO single
nanocrystals are obtained by thermal evaporation,
chemical vapor deposition, pulsed laser deposition, etc.
Nanocrystals thus grown are 1.5–3.0 µm high and 30–

uIV NDµ
Cg µH( )L
------------------------u''–

ρ1

C
----- 1 N

ρ2H
ρ1L
----------+⎝ ⎠

⎛ ⎞ u̇̇+ 0.=

100 nm in diameter, and microcrystals are 20–100 µm
high and 1–3 µm in diameter.

From the standpoint of continuum mechanics, an
array of nanocrystals fixed on a substrate represents a
composite piezoelectric body. In the electrostatic
approximation and in the absence of mass forces, the
basic equations of the electroelasticity theory have the
form [8–10]

(19)

(20)

(21)

Here, u is the displacement vector, E is the electric field
strength expressed in terms of potential ϕ, s is the
stress tensor, D is the electric induction vector, e is the
strain tensor, ∇ is the gradient operator, ρ is the density,
C is the rigidity matrix, and e and � are the piezoelectric
and dielectric constants.

Equations (19)–(21) should be complemented by
boundary conditions. Let surface Γ of the body consist
of two parts, Γ = Γ1 ∪ Γ2, with Γ1 ∩ Γ2 = ∅. Let dis-
placements u0 are set on part Γ1 and forces f on part Γ2.
In this case, the boundary conditions are given by

(22)

For a piezoelectric system, along with mechanical
boundary conditions (22), one should specify the elec-
trical boundary conditions. Let Γ = Γ3 ∪ Γ4 (Γ3 ∩ Γ4 =
∅), with electric potential ϕ0 and surface charge q set
on Γ3 and Γ4, respectively. Then, we have

(23)

For nonstationary processes, the boundary-value
problem stated by (19)–(23) should also include initial
conditions for the displacement field.

We will tackle a plane problem. Modal analysis of
Eqs. (19)–(23) with appropriate boundary conditions
for ZnO crystals on a sapphire substrate was performed
with the use of the ACELAN finite-element package
[11–13]. Consider the finite-element approximations of
the ACELAN packet for field equations (19), relation-
ships (20) and (21), and different types of boundary
conditions (22) and (23).

The finite-element approximation of the problem of
acoustoelectric elasticity leads to a set of ordinary dif-
ferential equations [11],

(24)

ρ u̇̇ ∇s, ∇ D⋅ 0,= =

s Ce eE, D– ee �E,+= =

e 1
2
--- ∇u ∇uT+( ), E ∇ϕ.= =

u Γ1
u0, ns Γ2

f .= =

ϕ Γ3
ϕ0, nD Γ4

q.= =

Mȧ̇ Ka+ F,=

M Muu 0

0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

, K
Kuu Kuϕ

Kuϕ* Kϕϕ–⎝ ⎠
⎜ ⎟
⎛ ⎞

,= =

F Fu Fϕ,( )T , a U Φ,( )T,= =

(a)

(b)

Fig. 3. Eigenmodes (a) due to the substrate and (b) localized
in the nanocrystal array.
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where a is the vector of nodal degrees of freedom, M
and K are the mass and rigidity matrices, and Nu and Nϕ
are shape functions. Matrix Muu represents the inertial
properties of the medium, and matrices Kuu, Kuϕ, and
Kϕϕ characterize its elastic, piezoelectric, and dielectric
properties, respectively. Vectors Fu and Fϕ take into
account mechanical and electrical actions at the domain
boundary.

After substitution of a = Aeiωt into Eq. (24), the
modal analysis of boundary problem (19)–(23) for the
ZnO crystal array on the sapphire substrate in terms of
the ACELAN package is reduced to a generalized equa-
tion in eigenvalues [11],

From a numerical experiment, we obtained the
eigenfrequencies of a cantilever-mounted ZnO nanoc-
rystal 1 µm in height (height-to-diameter ratio h/d =
10). The parameters of the ZnO single crystals and sap-
phire substrate were taken from [14]. The results of cal-
culation are listed in Table 1.

In the model, the substrate was taken in the form of
a rectangular sapphire microcrystal (10 × 20 µm) fixed
on its large side. The results of the modal analysis of
this crystal are presented in Table 2 (columns 2 and 4).
The large system comprised the sapphire crystal with
eight identical nanocrystals mounted on its free large
side. The results of the modal analysis for such a large
system are also listed in Table 2 (columns 1 and 3).
Some of the eigenmodes are shown in Fig. 3. Figure 3a
depicts the waveform of the first flexural mode. The
kinematic analysis of the waveforms corresponding to
the next eight eigenfrequencies indicates that the
motion of the large system is localized in a nanocrystal-
line “brush” (Fig. 3b) and the vibration waveforms of
the nanocrystals meet the first eigenfrequency pre-
sented in Table 1. The vibration frequencies of the set
of nanocrystals differ from the frequency of a single
nanocrystal by less than 4%. Near the second eigenfre-
quency of an individual nanocrystal (Table 2), the large
system behaves in a similar way, as illustrated in Fig. 4,
where the plateaus of the curve correspond to the eigen-
frequencies of a nanocrystal.

Thus, the eigenfrequency spectrum of the large sys-
tem can be approximated by a combination of the
eigenfrequencies of the substrate and those generated
by one nanocrystal. This conclusion is consistent with
analytical calculations in terms of the rod model.

DISCUSSION

The method proposed enables an accurate experi-
mental determination of the first eigenfrequencies of a
single nanoobject from the spectrum of the nanoarray–
substrate system and the spectrum of the substrate
alone. The method is especially efficient in the case

u x t,( ) Nu
TU t( ), ϕ x t,( ) Nϕ

TΦ t( ),= =

ω2MA– KA+ 0.=

when the first eigenfrequencies of nanoobjects are
comparable to the first eigenfrequencies of the sub-
strate (as they are in the example considered in this
study). The main factor limiting the applicability of the
method is the frequency range of measuring devices:
the frequencies of nanoobjects may be too high to be
detected.

Along with further refinement of this method, which
determines the mechanical characteristics of nanocrys-
tals by comparing the spectrum of the substrate with the
spectrum of the nanoarray–substrate system, one may
also take advantage of the fact that the eigenfrequencies
of such a system are highly sensitive to its mechanical

Table 1

No.
Eigenfrequencies

of individual
nanocrystal, GHz

Modes

1 0.10797 First flexural mode

2 0.67763 Second flexural mode

3 1.92039 Third flexural mode

4 3.48340 First longitudinal mode
(extension–compression)

5 3.83993 Fourth flexural mode

Table 2

Eigenfre-
quencies of 

large system, 
GHz

Eigenfre-
quencies of 
substrate, 

GHz

Eigenfre-
quencies of 

large system, 
GHz

Eigenfre-
quencies of 
substrate, 

GHz

0.036494 0.036594 0.611800 0.614194

0.103909 0.636879

0.103971 0.650301

0.104039 0.650491

0.104106 0.650885

0.104226 0.651087

0.104322 0.651771

0.104467 0.652115

0.104612 0.653619

0.134652 0.134973 0.673730 0.675596

0.136246 0.136017 0.693176 0.689642

0.280004 0.280137 0.714337 0.713020

0.350831 0.352308 0.715752 0.715594

0.399614 0.400228 0.752689 0.750820

0.458963 0.461709 0.796596 0.797104

0.468378 0.469073 0.825551 0.828275

0.510692 0.512042 0.833135 0.833899

0.533656 0.535745 0.895234 0.905771

0.554328 0.560235 0.927530 0.927179

0.581777 0.586277 0.938998 0.940679
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parameters and devise a nanosensor that will detect res-
onance changes in the nanoarray–substrate system, for
example, a pollution nanosensor. It should be noted
that, in this study, we disregarded the semiconducting
properties of ZnO single crystals. It is known [15] that
an electric field applied to a semiconductor generates
an electric current, which may amplify or attenuate an
acoustic signal due to the piezoelectric effect. An array
consisting of many ZnO semiconducting nanocrystals
can basically be used as an amplifier of weak acoustic
signals that is similar to those considered in [15–17].

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research (project nos. 03-07-90411 and 05-
01-00094), Russian Science Support Foundation, and a
grant of the president of the Russian Federation (grant
no. MD-3475.2005.1).

REFERENCES
1. R. H. Marshall, I. A. Sokolov, Y. N. Ning, et al., Meas.

Sci. Technol. 7, 1683 (1996).
2. Springer Handbook of Nanotechnology, Ed. by B. Bhus-

han (Springer, Berlin, 2004).
3. Handbook of Nanoscience, Engineering, and Technol-

ogy, Ed. by W. A. Goddard, et al. (CRC, Boca Raton,
2003).

4. S. Gould, Variational Methods for Eigenvalue Problems
(Oxford Univ. Press, Oxford, 1966; Mir, Moscow, 1970).

5. M. Lorenz, J. Lenzner, E. M. Kaidashev, et al., Ann.
Phys. (Leipzig) 2, 39 (2004).

6. E. M. Kaidashev, M. Lorenz, H. Wenckstern, et al., Appl.
Phys. Lett. 82, 3901 (2003).

7. M. Lorenz, H. Hochmuth, R. Schmidt-Grund, et al.,
Ann. Phys. (Leipzig) 13, 59 (2004).

8. G. A. Maugin, Continuum Mechanics of Electromag-
netic Solids (North-Holland, Amsterdam, 1988; Mir,
Moscow, 1991).

9. V. Z. Parton and B. A. Kudryavtsev, Electromagne-
toelasticity: Piezoelectrics and Electrically Conductive
Solids (Nauka, Moscow, 1988; Gordon and Breach, New
York, 1988).

10. V. Novatzky, Electromagnetic Effects in Solids (Mir,
Moscow, 1986) [translated from Polish].

11. A. V. Belokon’, V. A. Eremeev, A. V. Nasedkin, and
A. N. Solov’ev, Prikl. Mat. Mekh. 64, 381 (2000).

12. O. N. Akopov, A. V. Belokon’, and K. A. Nadolin, Mat.
Model. 13 (2), 51 (2001).

13. K. E. Vasil’chenko, A. V. Nasedkin, and A. N. Solov’ev,
Vychislitel’nye Tekhnologii 10, 10 (2005).

14. Acoustic Crystals, Ed. by M. P. Shaskol’skaya (Nauka,
Moscow, 1982) [in Russian].

15. V. A. Krasil’nikov and V. V. Krylov, Introduction to
Physical Acoustics (Nauka, Moscow, 1984) [in Russian].

16. Yu. V. Gulyaev and V. P. Plesskiœ, Usp. Fiz. Nauk 157, 85
(1989) [Sov. Phys. Usp. 32, 51 (1989)].

17. Yu. V. Gulyaev and F. S. Khikernel, Akust. Zh. 51, 101
(2005) [Acoust. Phys. 51, 81 (2005)].

Translated by A. Sidorova

100
90
80
70
60

40
30
20
10

0

50

1 5 9 13 17 21 25 29 33 37 41

Fig. 4. Distribution of the eigenfrequencies of the large sys-
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