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Investigation of the properties of nanodimensional
biological objects and particles (nanoparticles) and
their use in various fields, including medicine and phar-
macology, are among the key directions in the develop-
ment of nanotechnology [1, 2]. An important place
among various nanoparticles belongs to those possess-
ing spherical or nearly spherical shapes, such as
fullerenes, dendrimers, micelles, vesicles, and lipo-
somes [2–7]. Liposomes, micelles, and vesicles are
widely used in modern medicine, for example, in order
to deliver encapsulated drugs to target organs in the
organism. Structurally, liposomes comprise spherical
single- or multilayer lipid shells containing an internal
liquid medium. Dendrimers, albeit possessing a more
complicated structure, can also be considered as com-
prising a surface layer and a nucleus with different
properties. Spherical nanoparticles are of interest not
only in biology and medicine: numerous technological
application examples are offered by fullerenes; den-
drimers are promising materials for solar cells [5]; coat-
ing with micelles can be used for modification of the
catalytic properties of surfaces [2]. The interior part of
such nanoparticles can be used for the localization of
substances that are difficult to retain under usual condi-
tions [2, 3, 5]. Investigations into the mechanical and
other physical properties of spherical nanoparticles
encounter significant difficulties. Despite the long his-
tory of the investigation of cell membranes of micron
dimensions from the standpoint of continuum mechan-
ics and the theory of shells (see, e.g., [6, 8]), the prop-
erties of nanodimensional shells are still far from being
completely clear.

The present study was devoted to the mechanical
properties and structure of spherical nanoparticles in
relationship to their natural oscillations. Several first
eigenfrequencies of nanodimensional spherical parti-
cles can be determined from an analysis of the spectrum
of natural oscillations of a substrate bearing an array of
attached nanoparticles. Previously, we justified this
approach [10–12], applied it to determining the proper-
ties of nanocrystals and nanotubes, and established the
optimum experimental ratios of the geometric parame-
ters of nanodimensional objects and substrates. In this
study we have determined the spectrum of natural oscil-
lations of an elastic plate (substrate) bearing an array of
spherical shells. We propose a mechanical model that
describes the oscillations of such a substrate with
attached biological cells, organelles, or nanocapsules
(micelles, liposomes) formed using artificial analogs of
cell membranes. Note that the substrate can also repre-
sent a biological object such as a cell membrane. Ques-
tions pertaining to the adhesion of such nanodimen-
sional objects were considered in [2, 5, 9]. A solution of
the problem under consideration is of interest from the
standpoint of ultrasonic-excitation-controlled behavior
of nanospheres containing medicinal preparations—in
particular, drug release at a resonance frequency—and
modification of the properties of a surface covered with
such micelles.

Cell membranes have rather complicated structures
composed of lipids and proteins [6, 7]. From the stand-
point of the present investigation, the mechanical prop-
erties of membranes can be described using the theory
of shells [8]. In this study, the behavior of a cell (con-
sidered as a mechanical system) is treated within the
framework of the theory of membrane shells, according
to which the cell is modeled by a spherical shell that is
loaded by an interior pressure. Since the intracell
medium is liquid, it is assumed that the cell (capsule)
can lose its shape as a result of the deformation, but the
volume of liquid bounded by the shell surface remains
constant. An analogous formulation of the problem is
used in the theory of capillary phenomena [13].
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elastic shells of thickness 

 

h

 

 and radius 

 

R

 

 are attached
(Fig. 1). We assume that the shells are attached to the
plate (substrate) at the points 

 

x

 

 = 
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k
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y

 

 = 
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k

 

 

 

(

 

k

 

 = 1, 2, …

 

n

 

). The spherical shells are considered as membranes
loaded by a uniform internal hydrostatic pressure 

 

p

 

. In
the equilibrium state, the force acting on the shell sur-
face is everywhere the same: 

 

N

 

1

 

 = 

 

N

 

2

 

 = 

 

N

 

 = 

 

pR

 

/2

 

. This

 

N

 

 value is in fact the surface tension, and the whole
membrane can be considered as a spherical shell of
equal resistance [14].

The motion of a liquid inside the oscillating shell, as
well as the wave propagating on the shell surface, will
be ignored. In addition, lipid membranes are character-
ized by compressive-tensile deformations in the tan-
gent plane, which are small compared to the bending
deformations. The shell is described in a spherical coor-
dinate system (

 

r

 

, 

 

ϕ

 

, 

 

θ

 

), where 

 

φ ∈ 

 

[0, 2

 

π

 

]

 

 and 

 

θ ∈

 

 [0,

 

π

 

]

 

. The linearized oscillation equation for an expanded
spherical membrane shell can be written as

 

(1)

 

where 

 

m

 

 is the surface density of the shell, 

 

u

 

 is the shell
bending in the direction normal to the surface, 

 

q

 

 is the
additional pressure in the liquid interior, and 

 

q

 

k

 

 is the
force acting on the 

 

k

 

th shell from the substrate. Equa-
tion (1) is a partial case of the equation of motion used
in the theory of prestrained shells with neglect of the
bending and potential stiffness [15]. This equation
describes small capillary oscillations of a spherical
drop of a liquid with the surface tension 

 

N

 

. Since all
shells are assumed to be identical, the oscillations of
each sphere are described by Eq. (1), differing only in
the lumped load 

 

q

 

k

 

 that depends on the point of attach-
ment of the microsphere to the plate surface.

The isoperimetric condition of conservation of the
liquid volume imposes the following limitation on the
bending 

 

u

 

:

 

(2)

 

where 

 

S

 

 is the surface of the sphere. This integral rela-
tion is an additional equation that is necessary for deter-
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mining the pressure 

 

q

 

 (considered as a response to the
coupling (2)). As will be shown below, solutions to Eq.
(1) can be expressed in terms of the Legendre polyno-
mials, which automatically obey condition (2) owing to
their mutual orthogonality.

The equations of plate oscillations can be written as
[15]
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where 

 

D

 

 is the bending stiffness, 

 

ρ

 

 is the surface den-
sity, and 

 

f

 

 is the transverse lumped load related to the
presence of microspheres at the points 

 

x

 

 = 
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k
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 (
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). This load can be expressed as

where 
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 is the Dirac delta function of two vari-
ables. The condition of microsphere attachment to the
plate surface leads to the kinematic relationships 
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 Let us consider the harmonic axisymmetric oscil-
lations of a spherical shell described by Eqs. (1) and (2)
under the action of a load lumped at the bottom point of
the shell: 
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e
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, where 

 

ω

 

 is the oscillation
frequency. Nonaxisymmetric oscillation modes can be
considered in an analogous manner.

Seeking for a solution to this problem in the form of
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 = 
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(
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)

 

e
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t

 

 and substituting cos

 

θ

 

 = 

 

η

 

 (

 

η ∈

 

 [–1, 1]), we
can rewrite the equation of oscillations of the sphere as

(4)

Expanding the solution to Eq. (4) formally into a
series in orthogonal Legendre polynomials Pi(η), we
can express it as

(5)

where the coefficient U0 must be zero in order to meet
condition (2). The term U1P1(η) ≡ U1cosθ corresponds
to the vertical motion of the sphere considered as an
absolutely hard body.

Substituting expression (5) into Eq. (4) and using
the well-known properties of the Legendre polynomi-
als, we obtain the following expressions for the coeffi-
cients Ui:

(6)
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Fig. 1. Schematic diagram of an elastic plate with attached
spherical shells.
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Note that series (5) with coefficients (6) is condi-
tionally converging. Formula (6) implies the existence
of the following set of eigenfrequencies:

at which the sphere oscillates in the absence of an exter-
nal load (Qk = 0). The corresponding eigenmodes have
the form of UiPi(η).

3. Now let us consider oscillations of the plate,
assuming that it has a pivoting support over the entire
perimeter. For a large number of attached microspheres,
we can assume that the transverse load is described by a
continuous function of coordinates (x, y). In other words,
a microsphere is attached at every point of the plate sur-
face, which produces a transverse load f described by
the equation

Seeking for a solution to Eq. (3) in the form of w =
W(x, y)eiωt, using the representation U = UlPl(η), and tak-
ing into account the kinematic relation W(x, y) = U(–1) ≡
(–1)lUl, we can rewrite Eq. (3) as

(7)
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N
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----- ∆U 2U+[ ] mω2U η 1–= .+=

D∇4W ρω2W–  = 
N

R2
----- l l 1+( ) 2–[ ] mω2– (–1)lW .

This equation describes oscillations of a plate sup-
ported on an elastic inertial base of the Winkler type.

For a pivoting support, the function W can be repre-
sented in the form of a Fourier series in sine functions
as

In these terms, Eq. (7) has nontrivial solutions under
the following condition:

(8)

Using Eq. (8), we can determine the set of eigenfre-
quencies for a plate covered with attached micro-
spheres. Comparing the eigenfrequencies for the plates
with and without attached particles, it is possible to
determine some characteristics of microspheres,
namely, their density and surface tension N (or the
internal pressure p).

4. A numerical analysis of the natural oscillations of
a substrate covered with attached microspheres has
been performed using the finite element method. All
elements (substrate and microspheres) were considered
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Fig. 2. The first bending mode of oscillations in the elastic plate.

Fig. 3. The first (nonaxisymmetric) eigenmode localized in a nanosphere attached to the plate (depicted on an increased scale).
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as isotropic three-dimensional linear elastic bodies. The
oscillation modes were analyzed for systems with vari-
ous numbers of nanoparticles (ranging from one to
128), different geometries, and different types of sub-
strate supporting. The nanoparticles were considered as
hollow shells with a thickness two orders of magnitude
smaller than the substrate thickness. For comparison,
we have also considered the case of continuous nano-
particles (elastic balls).

In most cases, the results of calculations showed the
localization of natural oscillations in the nanoparticles
at frequencies corresponding to the first several eigen-
modes of the attached shell. Figure 2 shows the first
bending mode of a substrate with a bracket support, in
which case the shells move without deformation. Fig-
ure 3 illustrates the case of nonaxisymmetric oscilla-
tions corresponding to the first eigenfrequency of the
nanospheres, for which the plate remains virtually
undeformed. Localized oscillation modes (analogous to
that depicted in Fig. 2), in which the substrate is virtu-
ally immobile, have been also found for the second
(axisymmetric) eigenfrequency. Figure 4 shows the
first and second modes of the natural oscillations of
nanospheres. More complicated modes of oscillations
are observed at higher frequencies, for which both the
substrate and nanospheres are deformed. Thus, the
results of numerical calculations confirmed the validity
of assumptions concerning the possibility of separating
eigenfrequencies corresponding to a single nanodimen-
sional object in the spectrum of a nanoparticle array–
substrate system.

5. The theoretical and numerical analysis performed
for nanospheres in this study, as well as that reported
previously for nanocrystals and nanotubes [10–12],
shows that it is possible to determine the eigenfrequen-
cies of micro- and nanospheres in experiments using
the measurement of eigenfrequencies of a substrate
bearing an array of such nanodimensional objects
attached to the surface. The eigenmodes of oscillations
localized in the nanoparticles will be manifested by
increased absorption of an acoustic wave with the cor-
responding frequency incident onto the substrate and
by the detachment of nanoparticles (in the case of their
weak adhesion) from an almost immobile substrate.
These features in the behavior of a nanoparticle array–

substrate system can also be used for the experimental
determination of eigenfrequencies for continuous
micro- and nanospheres.
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