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INTRODUCTION

Interpretation of experimental data is a challenging
scientific problem. This problem becomes still more
acute in studying nanometer-scale objects. This is
because experimental conditions for nanoobjects differ
radically from those for macroobjects. In the latter case,
the dimensions of measuring devices (e.g., strain
gages) are, as a rule, much less than those of an object
being studied. Therefore, in experiments with mac-
roobjects, measuring equipment has a negligible effect,
if any, on the object and measurements give its true
characteristics. In the case of nanoobjects, the situation
is basically different, since microinstruments used in
these experiments may strongly influence the object,
changing its properties up to restructuring or even caus-
ing destruction. Eventually, measurements may repre-
sent the characteristics of the modified nanoobject or of
the nanoobject–instrument system. Thus, to study the
interplay between nanoobjects and measuring equip-
ment is of great importance. Below, this problem is
exemplified in determining the elastic properties of
nanoobjects with an atomic force microscope (AFM).

DETERMINATION OF THE ELASTIC MODULI 
OF NANOOBJECTS

The problem of finding the elastic moduli of nanom-
eter-scale objects has become topical. Many research-

ers note that the values of elastic moduli derived from
micro- and macroexperiments differ. In [1, 2], the
Young’s modulus and flexural rigidity of a 2D single-
crystal sheet was studied as a function of the number of
atomic layers in the sheet. The results obtained in [1, 2]
indicate that three expressions for the flexural rigidity
of the sheet (the expression known from the continuum
theory, the expression obtained by substituting Young’s
modulus into the expression from the continuum the-
ory, and that based on a discrete model [2]) give results
differing considerably for a small number of atomic
layers. This means that the formulas from the contin-
uum theory, which ignore the discreteness of the mate-
rial properties across the thickness of the sheet, may
yield erroneous results. Clearly, the discreteness along
the length of the sheet, where the number of layers is
large, is insignificant and the continuum expressions
seem to apply well in this case. The same is true for
analysis of nanorods and nanosheaths. Thus, it is
important to devise techniques allowing for directly
finding the elastic properties of thin-walled nanoob-
jects, i.e., without using formulas relating the elastic
moduli of a nanoobject to its thickness and the Young’s
modulus of the material. Specifically, a burning issue is
experimental determination of the mechanical proper-
ties of nanoobjects [3].

An efficient way of determining elastic moduli,
which are used in macromechanics, consists in measur-
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ing the eigenfrequencies of an object under test (the res-
onance method). Below, details of applying the reso-
nance method to nanoobjects are discussed and another
(antiresonance) method is suggested.

AFM MEASUREMENT OF THE NANOOBJECT’S 
VIBRATION EIGENFREQUENCIES

Today, the properties of nanoobjects, including their
eigenfrequencies, are studied with probe microscopy,
specifically, with an AFM, which interacts with a test
object through an electric field [4, 5]. The major com-
ponent of the AFM is a scanning probe (cantilever)
[6, 7]. Mechanically, the cantilever represents an elastic
beam one end of which is tightly fixed and the other is
free and bears a nanometer tip with a radius of curva-
ture of 10–50 nm. Standard commercial cantilevers
measure 200 

 

×

 

 35 

 

×

 

 1.5 

 

µ

 

m and have resonance fre-
quencies ranging from 10 to 400 kHz.

The AFM operates in three (contact, contactless,
and tapping) modes. Note that all the modes are contact
from the mechanical point of view. As the tip
approaches a test object, they come into interaction, no
matter whether this is interaction is contact or is accom-
plished through force fields. The dependence of the
force of interaction on the tip–object distance is akin to
that observed in the case of interaction with the
Lenard–Jones potential. Depending on the tip–object
distance, the force of interaction is either repulsive
(contact mode), attractive (contactless modes), or alter-
nating (tapping mode). All the three modes can be used
to examine the surface relief, and the tapping mode is
also applied to determine the eigenfrequencies. In this
mode, the clamped end of the cantilever executes verti-
cal vibrations with a given frequency. Measuring the
vibration amplitudes of cantilever points at different
frequencies, one fixes resonances. If the tip is away
from the surface, the resonance frequencies are close to
the eigenfrequencies of the cantilever. As the tip
approaches the surface and comes into interaction with
it, the resonance frequencies vary. From the depen-
dence of the resonance frequency on the tip–surface
distance, one can judge the properties of the test object.

Application of an AFM to measure eigenfrequen-
cies is not free of disadvantages and limitations, which
do not allow making good use of the potential of this

instrument. The problems associated with this method
are the following.

(1) The frequency range accessible to measurements
is limited. To extend it to higher frequencies requires a
decrease in the dimensions (weight) of the cantilever
and/or an increase in its rigidity.

(2) Imperatively, the top of the tip must be much
smaller than the test object; therefore, the radius of cur-
vature of the tip should be decreased as the test object
gets smaller.

(3) The nanoobject should be mounted so that the
support has no influence on its eigenfrequencies. Oth-
erwise, extra difficulties in interpreting measurement
results and gaining information on the nanoobject may
arise.

(4) The tip is in contact with the object and inevita-
bly influences it somehow or other. As a result, the
eigenfrequencies of the nanoobject–cantilever system,
rather than of the nanoobject itself, are measured.

The last-mentioned problem is related to the well-
known mechanical effect: the redistribution of the
vibration eigenfrequencies of the cantilever–object sys-
tem among the cantilever and object [8]. In this case,
the change in the frequency spectrum considerably
depends on the tip–surface distance, since such a redis-
tribution is equivalent to a change in the “rigidity” of
field interaction coupling.

Physically, two problems lying at the interfaces
between mechanics and experimental physics arise
here: (i) determination of the nanoobject’s elastic mod-
uli from the eigenfrequencies of the system and
(ii) design of experiments making it possible to sepa-
rate out the eigenfrequencies of a nanoobject from the
frequency spectrum of the system.

SYSTEM UNDER TEST

The problem stated here and the cantilever–nanoob-
ject test system elaborate upon work [6]. The basic dif-
ference is that here test nanoobjects possess intrinsic
dynamics. Examples are the elements of thin-walled
(nanodimensional) structures, such as rods, sheaths,
and helices. Below, we set forth theoretical grounds for
determining the vibration eigenfrequencies of rodlike
structures with an AFM.

Consider the mechanical model of a test object
shown in Fig. 1. The rod at the left of the figure symbol-
izes a cantilever. Its left end is firmly fixed, while the
right end interacts with the object. The bend of the can-
tilever in the vertical direction is specified by function

 

u

 

(

 

x

 

1

 

, 

 

t

 

), where 

 

x

 

1

 

 is the coordinate of the rod along its
length (at the left end of the rod, 

 

x

 

1

 

 = 0). Let 

 

L

 

1

 

, 

 

D

 

1

 

, and

 

ρ

 

1

 

 designate the length, flexural rigidity, and linear den-
sity of the cantilever, respectively. Rigidity 

 

C

 

1

 

 of the
cantilever, which is usually included in specifications,
is defined as the force acting upon the tip divided by the
displacement of the free end of the cantilever. It is easy

 

Fig. 1.

 

 Cantilever (at the left) and nanorod (at the right).
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to show that rigidity 

 

C

 

1

 

 and flexural rigidity 

 

D

 

1

 

 of the

cantilever are related to each other as 

 

C

 

1

 

 = . The

nanorod at the right simulates an object the flexural
rigidity of which is to be found [9, 10]. Its right-hand
end is firmly fixed, and the left-hand one interacts with
the cantilever. The vertical bend of the nanorod is given
by function 

 

v

 

(

 

x

 

2

 

, 

 

t

 

), where 

 

x

 

2

 

 is the coordinate of the
nanorod along its length (at its right-hand end, 

 

x

 

2

 

 = 0).
Let 

 

L

 

2

 

, 

 

D

 

2

 

, and 

 

ρ

 

2

 

 designate the length, flexural rigidity,
and linear density of the nanorod, respectively. Cantile-
ver–rod field interaction is simulated by linear rigidity

 

C

 

 of the spring, which, in essence, means linearization
of the Lenard–Jones (or any other) interaction potential
in the static equilibrium state. It should be noted that the
position of static equilibrium is easy to find in experi-
ments. Away from the surface being studied, the canti-
lever is in the horizontal position. Approaching to the
surface, it starts deforming but takes the horizontal
position again at some distance to the surface, signify-
ing static equilibrium. At the zero time, the rods are
assumed to be undeformed and the spring unstrained.
At static equilibrium, the tip–object coupling rigidity
(spring rigidity) is high; so, 

 

C

 

 

 

�

 

 

 

C

 

1

 

. For this reason, to
find coupling rigidity 

 

C

 

 from static experiments is a
great challenge: the difference between the displace-
ments of the tip and surface is within the measurement
error. Measurements in the ranges 

 

C

 

 ~ 

 

C

 

1

 

 and 

 

C

 

 

 

�

 

 

 

C

 

1

 

are difficult to take, since these ranges correspond to the
uncertain portion of the force–displacement diagram.

FREE VIBRATIONS 
OF THE CANTILEVER–NANOOBJECT SYSTEM

The basic equations of dynamics that describe the
free vibrations of the given mechanical system have the
form

(1)

They are complemented by the boundary conditions

(2)

The spectral problem meeting Eqs. (1) is stated in line
with finding the vibration eigenfrequencies of the sys-
tem; that is, a solution is sought in the form 

 

u

 

(

 

x

 

1
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) =

 

u

 

0
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e
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0
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e

 

i

 

ω

 

t

 

. Solving this spectral

3D1

L1
3

---------

D1uIV ρ1 u̇̇+ 0, D2v
IV ρ2v̇̇+ 0.= =

u 0( ) 0, u' 0( ) 0, u'' L1( ) 0,= = =

D1u''' L1( ) C u L1( ) v L2( )–[ ] ,=

v 0( ) 0, v ' 0( ) 0, v '' L2( ) 0,= = =

D2v ''' L2( ) C u L1( ) v L2( )–[ ] .–=

problem yields the frequency equation

(3)

where

(4)

and ω is the eigenfrequency of the system. As follows
from (3), the eigenfrequencies depend on all the param-
eters of the system, so that those of the nanorod are
impossible to separate out from the frequency spectrum
of the system. Lets us find a relationship between quan-

tities  and . Making use of formulas (4) for

the wavenumbers and expanding known quantities Di =
EiIi and ρi = Si (Ei are the Young’s moduli of the

rods,  are their volume densities, and Ii and Si are the
moments of inertia and cross-sectional areas of the
rods; i = 1, 2), we obtain

(5)

If the rods have hi × ai rectangular cross sections,
where hi and ai are, respectively, their thicknesses and
widths, expressions (5) take the form

(6)

For rods of arbitrary cross section, the following
estimates are valid:

(7)

where di are the characteristic linear sizes of the cross
sections. From (6) and (7), we have

(8)

1 λ L1( ) λ L1( )coshcos+[ ] 1 µL2( )cos µL2( )---cosh+


+
C

D2µ
3

------------ µL2( )sin µL2( )cosh µL2( ) µL2( )sinhcos–[ ]


+
C

D1λ
3

------------ λ L1( )sin λ L1( )cosh λ L1( ) λ L1( )sinhcos–[ ]

× 1 µL2( )cos µL2( )cosh+( ) 0,=

λ2 ρ1

D1
------ω, µ2 ρ2

D2
------ω,= =

C

D1λ
3
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D2µ
3
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ρi*

ρi*

D1λ
3 ρ1*S1( )3/4
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D2µ
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D1λ
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12
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Thus, frequency equation (3) can be approximated
as

(9)

Equation (9) has two spectra of eigenfrequencies.
The first one contains the vibration eigenfrequencies of
the cantilever,

(10)

the other, those of the nanorod with the spring-loaded
end,

(11)

Thus, we managed to identify (separate out) the
spectra for either rod, even having made not too strong
assumption (8).

Note that µL2 ~ 1 for the first eigenfrequencies of the

nanoobject. Then, dimensional quantity  can be

estimated as

(12)

Since C � C2, the inequality  � 1 is valid.

Consequently, Eq. (11) can be approximated as

(13)

Equation (13) represents the vibration spectrum of a
rod one end of which is firmly fixed and the other is
hinged.

The natural problem arises as to how to find the can-
tilever vibration waveform at the frequencies found
above, since the cantilever vibration waveform has a
considerably effect on the measurement accuracy when
resonance is detected with a laser beam, which gives a
spot of a certain size.

FORCED VIBRATIONS OF THE SYSTEM

Consider the forced harmonic vibrations of the sys-
tem. Let

(14)

1 λ L1( ) λ L1( )coshcos+[ ] 1 µL2( ) µL2( )coshcos+(

+
C

D2µ
3

------------ µL2( ) µL2( )coshsin[
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 0.=
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C

D2µ
3
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– µL2( ) µL2( )sinhcos ] 0.=

C

D2µ
3
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C

D2µ
3

------------
CL2

3

D2 µL2( )3
----------------------- C

C2
------, C2∼≡

3D2

L2
3

---------.=

C

D2µ
3

------------

µL2( )sin µL2( )cosh µL2( ) µL2( )sinhcos– 0.=

u 0 t,( ) A Ωt( ), Asin const.= =

u x1 t,( ) P1 λ*x1( )cos P2 λ*x1( )sin+[=

Solutions to the problem thus stated are functions

(15)

where  = Ω and  = Ω. Constants Pi and

Qi are found from the boundary conditions (the respec-
tive expressions are very awkward and therefore omit-
ted). Notably, the denominators of the expressions for
Pi and Qi vanish when forced vibration frequency Ω
coincides with one of the eigenfrequencies of the sys-
tem, ωn, given by (3). At Ω = ωn, the cantilever vibra-
tion amplitude becomes indefinitely large in our model
and sharply grows in real experiment. This fact allows
us to find resonance frequencies coincident with the
eigenfrequencies of the system.

DYNAMIC DAMPING OF VIBRATIONS

Experimentally, one can detect not only a sharp
buildup of the vibration amplitude but also vanishing of
the amplitude. In many-body systems with distributed
parameters, the latter fact may be observed in two
cases: (i) when the point where the amplitude is mea-
sured is a node of a given waveform of vibration or
(ii) when the vibrations of one body are dynamically
damped at the partial frequency of another (so-called
antiresonance). Let us pose the question: whether there
exist forced vibration frequencies Ω at which the canti-
lever’s right-hand end, which is contact with the
nanoobject, remains stationary at any time instant? One
can answer this question having solved the equation

(16)

Substituting expression (15) for u(x1, t) into (16),
taking into account expressions for constants Pi and Qi,
and carrying out simple rearrangements, we obtain the
equation

(17)

Solving (17), one can find frequencies Ωn at which
the vibration amplitude of the cantilever’s right end
vanishes. It is easy to check that (17) can be split into

+ P3 λ*x1( )cosh P4 λ*x1( ) ] Ω t( ),sinsinh+

v x2 t,( ) Q1 µ*x2( )cos Q2 µ*x2( )sin+[=

+ Q3 µ*x2( )cosh Q4 µ*x2( )sinh+ ] Ω t( ),sin

λ*
2 ρ1

D1
------ µ*

2 ρ2

D2
------

u L1 t,( ) 0.=

AD1D2λ*
2 µ*

3 2 λ*L1( ) λ*L1( )sincosh[
+ 2 λ*L1( ) λ*L1( )cossinh 2λ*L1( )sinh 2λ*L1( )sin ]+ +

× 1 µ*L2( ) µ*L2( )coshcos+(

+
C

D2µ*
3

------------- µ*L2( ) µ*L2( )coshsin[

---– µ*L2( ) µ*L2( )]sinhcos 
 0.=
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two independent equations. The first one has the form

(18)

the other,

(19)

Equation (18) depends on only the cantilever param-
eters and so is of no interest for us, while Eq. (19)
depends on the parameters of the nanorod and rigidity
of nanorod–cantilever coupling. It is this equation that
specifies “antiresonance” frequencies, at which the
vibration of the cantilever’s right end is damped. It
should be noted that Eq. (19) exactly coincides with
Eq. (11), which specifies the eigenfrequencies of the
hinged nanorod. Since Eq. (11) has been derived from
the frequency equation by neglecting small quantities

on the order of , it can be argued that antireso-

nance frequencies Ωn are close to eigenfrequencies Ωn

of the system, differing from them by small quantities
of the above order.

2 λ*L1( ) λ*L1( )sincosh 2 λ*L1( ) λ*L1( )cossinh+

+ 2λ*L1( )sinh 2λ*L1( )sin+ 0;=

1 µ*L2( )cos µ*L2( )cosh+

+
C

D2µ*
3

------------- µ*L2( ) µ*L2( )coshsin[

– µ*L2( ) µ*L2( ) ]sinhcos 0.=

C

D1λ
3

------------

VIBRATION WAVEFORMS

Figures 2–5 show the first (panels “a”) and second
(panels “b”) forms of cantilever vibrations at resonance
(Fig. 2) and antiresonance (Figs. 3–5). The vertical axis
in these figures plots the displacement of cantilever
points; the abscissa axis, dimensionless coordinate
x1/L1. It is assumed that the cantilever and nanorod have
the same sizes. When the nanorod diminishes in size,
qualitatively the cantilever waveforms change insignif-
icantly. The resonances are easy to detect with an AFM;
the only and essential drawback here is that the reso-
nance frequencies characterize the cantilever–test
object system instead of the object itself. In light of this,
the effect of antiresonance comes into importance,
since it allows one to determine the vibration eigenfre-
quencies of the test nanostructure. The cantilever vibra-
tions at antiresonance frequencies have a multinodal
waveform. The number of nodes depends on the serial
number of the waveform and on parameter

(20)

If the rods have a rectangular cross section hi × ai,
then

(21)

For rods of an arbitrary cross section with character-

µL2

λ L1
---------

D1ρ2

D2ρ1
------------4

L2

L1
-----

E1ρ2*I1S2

E2ρ1*I2S1

-----------------------4
L2

L1
-----.= =

µL2

λ L1
---------

E1ρ2*

E2ρ1*
------------4

h1

h2
-----

L2

L1
-----.=
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Fig. 2. Resonance waveforms (L2/L1 = 1, h2/h1 = 1).
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Fig. 3. Antiresonance waveforms (L2/L1 = 1, h2/h1 = 1).
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istic linear sizes di, the estimate

(22)
µL2

λ L1
---------

E1ρ2*

E2ρ1*
------------4

d1

d2
-----

L2

L1
-----∼

is valid. If the cantilever and nanorod are of the same
size, the first waveform of the cantilever has no nodes
(Fig. 3a) and the second waveform has a single node
(Fig. 3b). As the test nanorod is scaled down by a factor
of 10, the antiresonance frequencies increase by the
same factor and the waveforms of the cantilever
become multinodal (Fig. 4). The antiresonance fre-
quencies may increase to the point where they go
beyond the measurement range of the instruments.
When trying to detect an antiresonance in a multinodal
waveform, one may run into obstacles associated with
the fact that the laser beam used in the optics detecting
the cantilever displacement [11] has a finite size and so
the amplitude is averaged over a certain area of the rod
rather than being measured at a point. If the length of
the rod decreases not as strongly as the linear sizes of
its cross section, the eigenfrequencies and number of
nodes in the waveform grow with a lower rate. To make
sure of it, it suffices to compare Fig. 4, which meets the
case when all the linear sizes were decreased in propor-
tion, with Fig. 5, which corresponds to the case when
the linear sizes shrink more significantly but dispropor-
tionately. Thus, with a relationship between the cantile-
ver and nanorod parameters chosen properly, the laser
devices currently available can be used to detect anti-
resonances in the cantilever vibration waveforms.

CONCLUSIONS

The problem of finding the rigidity of nanodimen-
sional objects was considered in [12]. In our case, the
flexural rigidity of the nanorod can be found from both
the resonance frequencies, using (3), and antiresonance
frequencies using (19). Both equations involve two
unknown parameters: flexural rigidity D2 of the nano-
rod and rigidity C of cantilever–nanorod coupling
(mass m2 and length L of the cantilever can be mea-
sured, and its linear density ρ2 can then be found by the
formula ρ2 = m2/L2). Having measured two (resonance
or antiresonance) frequencies, one substitutes them into
the respective equation, (3) or (19) and thus reduces the
problem of finding the flexural rigidity of the nanorod
to the solution of transcendental equations in two
unknowns. Note that Eq. (19) is simpler than (3) and,

unlike (3), does not contain small parameter .

Thus, determination of the flexural rigidity of the nan-
orod from antiresonance frequencies is computation-
ally easier. However, it makes sense to apply both
approaches and compare the obtained values of D2 and
C to improve the reliability of the results.
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