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Abstract It is well known that the properties of polar and non-polar piezoelectric
materials are different. For example, the polar piezoelectric materials (ferroelectrics)
possess spontaneous polarization, while for non-polar materials such behavior can-
not be observed. However, in the classical linear theory of piezoelectricity there
is no qualitative difference between polar and non-polar materials. According to
the classical theory the only difference between them consists in the fact that the
piezoelectric moduli of polar materials are much greater than those of non-polar
materials. The objective of our investigation is to describe piezoelectricity taking
into account the qualitative peculiarities of polar and non-polar materials. Starting
from the consideration of microstructure of piezoelectric materials we propose two
theories of piezoelectricity based on the equations of micro-polar continuum. The
first theory describes the piezoelectric effect in polar materials. This theory is based
on the model of complex particle possessing a non-zero dipole moment and having
seven degrees of freedom. The second theory describes the piezoelectric effect in
non-polar materials. This theory is based on the model of an unit cell which has a
non-zero quadrupole moment and zero dipole moment. Under certain simplifying
assumptions both theories can be reduced to the classical theory of piezoelectricity.
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1 Introduction

There exist many crystals having piezoelectric properties. The piezoelectric proper-
ties reveal themselves as a result of the influence of electromagnetic fields on matter.
Piezoelectric materials can be divided into two classes: polar and non-polar piezo-
electrics. For example, LiGaO2, Li2GeO3, CdTe, BaTiO3, PZT , Pb5Ge3O3 are
polar piezoelectrics, and α − HIO3, KH2PO4, TeO2, Bi12GeO20, Bi12SiO20,
β − ZnS, α − SiO2 are non-polar piezoelectrics. The qualitative difference of
properties of polar and non-polar piezoelectric materials consists in the fact that in
contrast to non-polar piezoelectrics the polar piezoelectric materials (ferroelectrics)
have non-zero dipole moment unit volume, i. e. they possess spontaneous polariza-
tion. However, in the classical theory of piezoelectricity [1, 2] based on the equations
of electrostatics and symmetric theory of elasticity, as well as in the improved theory
of piezoelectricity [3] based on the equations of electrostatics and non-symmetric
(moment) theory of elasticity, there is no qualitative difference between polar and
non-polar materials. According to the classical theory the only difference between
polar and non-polar materials is that the piezoelectric moduli of polar materials
are much greater than those of non-polar materials. The most known approaches
which allow us to take into account the electric microstructure and permanent elec-
tric polarization are developed in [4–6]. We consider the method of description of
piezoelectricity which allows us to take into account the qualitative peculiarities of
polar and non-polar materials. This method was proposed by P. A. Zhilin (see [7,
8]). The main ideas of the method are to consider the microstructure of piezoelec-
tric materials and use the equations of micro-polar continuum. By another method,
but also taking into account the microstructure of materials, the theories of polar
piezoelectrics are constructed in [9–12]. The theory of micromorphic thermoelastic
continua taking into account electromagnetic effects is considered in [13]. On the
basis of this theory the different aspects of theories of micromorphic piezoelectricity,
micromorphic thermopiezoelectricity and magneto-electro-elasticity are discussed in
[14–17]. In the case of non-polar materials the microstructure approach to description
of piezoelectric effects is also of interest because it allows us to take into account elec-
tric quadrupoles [18]. We propose two theories of piezoelectricity. The first theory
describes the piezoelectric effect in polar materials, and the second one describes the
piezoelectric effect in non-polar materials. We show that under certain simplifying
assumptions both theories are reduced to the classical theory of piezoelectricity.

2 Polar Piezoelectric Materials

2.1 Model of the Dipole Particle

We consider the medium with particles that are neutral dipoles. The neutral dipole
is a pair of charges q+ = q and q− = −q separated by a distance. The dipole can
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Fig. 1 The electric dipole

move and rotate in space, and also change its value, i. e. it can stretch and compress.
The reference position of the dipole (see Fig. 1) is characterized by the following
quantities. Radius-vectors R+

0 and R−
0 determine the positions of charges q+ and q−

correspondingly, vector l0 determines the relative position of the dipole charges, and
radius-vector r0 determines the position of dipole center. When passing to the actual
position the charges q+ and q− move to the points determined by radius-vectors
R+ and R− correspondingly, the dipole center moves to the point determined by
radius-vector r. Vector l determining the relative position of the charges of dipole
in the actual configuration is equal to R+ − R−. The quantities characterizing the
displacements of the dipole center and dipole charges are determined as

u = r − r0, u+ = R+ − R+
0 , u− = R− − R−

0 . (1)

Let us introduce the dipole moments in the reference and actual positions and
denote them by d0 and d, correspondingly:

d0 = ql0 = q(R+
0 − R−

0 ), d = ql = q(R+ − R−). (2)

In addition, let us introduce the polarization vector p equal to change in dipole
moment and the scalar quantity ξ being the relative change in absolute value of
dipole moment:

p = d − d0, |d| = |d0|(1 + ξ). (3)

After simple transformations we obtain the following formula for p:

p = p1 + p2, p1 = ξd0, p2 = ϕ × d0, (4)
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where ϕ is the rotation vector of the dipole. Equation (4) is obtained under the
assumption of smallness of rotation and extension of the dipole. This assumption is
justified because we consider the linear theory.

Now we write the expression for the rate of energy change due to the influence of
electric field on the dipole:

ė = F+ · v+ + F− · v− . (5)

Here F+ and F− are forces acting on the positive charge and negative charge, cor-
respondingly; v+, v− are the velocities of these charges. Using the known formula
for force acting on a charged particle we have F = qE, where E is the electric field
vector. Let us perform the following transformations:

ė = q+ E(R+) · u̇+ + q− E(R−) · u̇−

= q
(
E(R+) − E(R−)

) · u̇ + qE(R+) · 1

2q
ṗ + qE(R−) · 1

2q
ṗ

= d0 · (∇E) · u̇ + E · ṗ.

Using Eq. (4) we calculate the time derivative of the polarization vector

ṗ = ξ̇d0 + ϕ̇ × d0. (6)

Thus, the rate of energy change has the form

ė = d0 · (∇E) · u̇ + (d0 × E) · ϕ̇ + (d0 · E) ξ̇. (7)

2.2 Spontaneous and Piezoelectric Polarization
of the Medium

Now we introduce the density of the spontaneous polarization Ps of a continuous
medium

Ps = lim
ΔV→0

∑

k∈ΔV d0k

ΔV
. (8)

We define the density of the piezoelectric polarization Pp as a limit of the ratio

Pp = lim
ΔV→0

∑

k∈ΔV pk

ΔV
= P

p
1 + P

p
2 , (9)

where
P

p
1 = ξPs, P

p
2 = ϕ × Ps. (10)
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Thus, vector Pp is a sum of the piezoelectric polarizations of different nature. Vector
P

p
1 is concerned with the change in absolute value of dipole moment, and vector

P
p
2 is concerned with the rotation of dipole moment. These vectors are mutually

orthogonal.
Using Eqs. (9), (10) we write the analogue of Eq. (7) for continuous medium

Ė = Ps · (∇E) · u̇ + (Ps × E) · ϕ̇ + (Ps · E) ξ̇. (11)

We suppose the effect of electric field to be an external action. There are two ways
to calculate the power of this external action. On the one hand, the power of external
actions per unit volume of continuous medium is equal to ρF · u̇ +ρL · ϕ̇, where ρF
is the body force, ρL is the body moment. On the other hand, the power of external
actions is equal to that part of the rate of energy change Ė which depends on the
velocities u̇ and ϕ̇. Thus, we obtain

ρF · u̇ + ρL · ϕ̇ = Ps · (∇E) · u̇ + (Ps × E) · ϕ̇. (12)

Comparing the left-hand and the right-hand sides of Eq. (12) we conclude that the
coefficient of u̇ on the right-hand side of the equation can be associated with a body
force and the coefficient of ϕ̇ on the right-hand side of the equation can be associated
with a body moment:

ρF = Ps · ∇E, ρL = Ps × E. (13)

Thus, the physical meaning of the first two terms on the right-hand side of Eq. (11) has
been determined. The last term can be associated with the quantity Q characterizing
the energy supply from an external source:

Q = (Ps · E)ξ̇. (14)

2.3 Equations of Polar Piezoelectric Medium

In view of expressions (13) for the body force and moment, the equations of motion
of the polar piezoelectric medium in the linear approximation are written as

∇ · τ −
1

2
∇ × q + Ps · ∇E = ρü, (15)

∇ × m + q + Ps × E = ρJ · ϕ̈. (16)

Here τ is the symmetric part of stress tensor, q is the vector characterizing the
antisymmetric part of stress tensor, m is the vector characterizing the antisymmetric
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part of moment stress tensor, ρ is the mass density in the reference configuration and
J is the inertia tensor per unit mass.

We introduce the electric induction vector D by the relation

D = ε0E + Pp, (17)

where ε0 is the permittivity of free space. Using Eqs. (9), (10) we rewrite Eq. (17) in
the form

D = ε0E + ξPs + ϕ × Ps. (18)

In view of Eq. (18) the equation of electrostatics

∇ · D = 0 (19)

takes the form
∇ · [

ε0E + ξPs + ϕ × Ps
]

= 0. (20)

According to Eq. (20) the Cauchy–Green relation between D and E adopted in the
classical theory of piezoelectricity is unnecessary in the theory under consideration
and it should be replaced by the Cauchy–Green relation between ξ and the projection
of E on Ps. This is one of the essential differences between the micro-polar theory
of piezoelectric medium and the classical theory of piezoelectricity.

Now we formulate the energy balance equation

ρU̇ = τ · · ġ − q · θ̇ − m · γ̇ + ∇ · h + Q, (21)

where h is the heat flow vector, Q is the rate of energy supply from an external source,
g is the strain tensor, θ and γ are the strain vectors connected with the rotational
degrees of freedom:

g =
1

2

(
∇u + ∇uT

)
, θ = ϕ −

1

2
∇ × u, γ = ∇ × ϕ. (22)

In order to obtain the Cauchy–Green relations we use the method developed by
P. A. Zhilin [7, 8]. We represent τ, q and m in the form

τ = τe + τf, q = qe + qf, m = me + mf, (23)

where τe, qe, me are the elastic (independent of strain rate) parts of the force and
moment stresses, and τf, qf and mf are the dissipative parts of these stresses. In
view of Eq. (23) and the expression for the rate of energy supply (14) the energy
balance equation (21) can be rewritten in the form
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ρU̇ = τe · · ġ − qe · θ̇ − me · γ̇ + (E · Ps) ξ̇

+ ∇ · h + τf · · ġ − qf · θ̇ − mf · γ̇. (24)

Let us introduce two scalar quantities ϑ and H satisfying the equation

ϑḢ = ∇ · h + τf · · ġ − qf · θ̇ − mf · γ̇, (25)

and call them the temperature and entropy, correspondingly. The following consti-
tutive equation can be used for the heat flow vector h:

h = k∇ϑ, (26)

where k is the heat-conduction coefficient of the medium. Substituting Eq. (26) into
Eq. (25) we obtain the heat conduction equation

kΔϑ − ϑḢ = −τf · · ġ + qf · θ̇ + mf · γ̇. (27)

The terms on the right-hand side of Eq. (27) characterize the heat production con-
nected with the dissipative processes.

Using Eq. (25) we rewrite the energy balance equation (21) in the form

ρU̇ = τe · · ġ − qe · θ̇ − me · γ̇ + (E · Ps) ξ̇ + ϑḢ . (28)

Hence U = U (g, θ, γ, P, ξ, H ), from Eq. (28) we obtain the Cauchy–Green rela-
tions

τe =
∂ρU

∂g
, qe = −

∂ρU

∂θ
, me = −

∂ρU

∂γ
,

E · Ps =
∂ρU

∂ξ
, ϑ =

∂ρU

∂H
.

(29)

Let us represent the internal energy as the positive defined quadratic form

ρU =
1

2
g · · C(g) · · g +

1

2
θ · C(θ) · θ +

1

2
γ · C(γ) · γ +

1

2
C(ξ)ξ2

+
1

2
C(H )H 2 + θ · C(θg) · · g + γ · C(γg) · · g + ξC(ξg) · · g (30)

+ H C(H g) · · g + γ · C(γθ) · θ + ξC(ξθ) · θ + H C(H θ) · θ

+ ξC(ξγ) · γ + H C(H γ) · γ + C(ξH )ξH .

Substituting Eq. (30) into the Cauchy–Green relations (29) we get the constitutive
equations
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τe = C(g) · · g + θ · C(θg) + γ · C(γg) + C(ξg)ξ + C(H g)H ,

−qe = C(θg) · · g + C(θ) · θ + γ · C(γθ) + C(ξθ)ξ + C(H θ)H ,

−me = C(γg) · · g + C(γθ) · θ + C(γ) · γ + C(ξγ)ξ + C(H γ)H , (31)

E · Ps = C(ξg) · · g + C(ξθ) · θ + C(ξγ) · γ + C(ξ)ξ + C(ξH )H ,

ϑ = C(H g) · · g + C(H θ) · θ + C(H γ) · γ + C(ξH )ξ + C(H )H .

In order to close the set of equations (15), (16), (20), (22), (23), (27), (31) the
constitutive equations for the dissipative parts of force and moment stresses τf, qf,
mf should be formulated.

2.4 The Simplest Theory of Polar Medium

Now we neglect the inertia of rotation and the moment interactions, i. e. we suppose
that J = 0 and m = 0. Then the equation of the angular momentum balance (16)
takes the form

q = −Ps × E. (32)

Substituting Eq. (32) into the equation of momentum balance (15) we obtain

∇ · τ +
1

2
∇ × (Ps × E) + Ps · ∇E = ρü. (33)

Let us neglect the dissipative and thermal effects. Then in view of Eq. (32) the con-
stitutive equations (31) take the form

τ = C(g) · · g + θ · C(θg) + C(ξg)ξ,

Ps × E = C(θg) · · g + C(θ) · θ + C(ξθ)ξ, (34)

E · Ps = C(ξg) · · g + C(ξθ) · θ + C(ξ)ξ,

where index e of tensor τ is left out since the dissipative part of this tensor is equal
to zero. In view of the relation between angles ϕ and θ the expression (18) takes the
form

D = ε0E + ξPs + θ × Ps +
1

2
(∇ × u) × Ps (35)

and the equation of electrostatics (20) is written as

∇ ·
[
ε0E + ξPs + θ × Ps +

1

2
(∇ × u) × Ps

]
= 0. (36)
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Thus, the set of equations (33)–(36) represents the formulation of the simplest theory
of polar piezoelectric medium. Here the basic variables are the displacement vector
u, the shear vector θ and the quantity ξ characterizing the dipole deformation.

2.5 Comparison with the Classical Theory

To compare Eqs. (33)–(36) with the equations of classical theory of piezoelectricity
we should obtain the relations between τ, D and g, E. In order to do this we solve
the system of second and third equations in (34) with respect to θ and ξ. Then
we substitute the obtained expressions into the first equation in Eqs. (34) and into
Eq. (35). As a result we get

τ = C · · g − E · M, D = M · · g + ε · E −
1

2
Ps × (∇ × u) , (37)

where C is the stiffness tensor; M is the tensor of piezoelectric moduli; ε is the
permittivity tensor. Tensors C, M, ε can be expressed in terms of the material tensors
introduced above by the sufficiently complicated formulas.

Comparison of the constitutive equations (37) and the corresponding constitutive
equations of the classical theory [1, 2]

τ = C · · g − E · M, D = M · · g + ε · E (38)

reveals that the constitutive equations for τ are the same and the constitutive equations
for D differ by the additional term which depends on the curl of displacement vector
in the case of the micro-polar theory.

The equation of motion (33) differs from the classical equation of motion

∇ · τ + ρF = ρü, τ = τT (39)

by the presence of two terms modelling the effect of the electric field. The equation
of electrostatics has the same form (19) in both theories.

3 Non-Polar Piezoelectric Materials

3.1 Model of the Unit Cell of Crystal Lattice

We consider the crystal lattice with unit cells consisting of N ions which have charges
qi (see Fig. 2). In the reference configuration the position of mass center of the cell
is determined by the radius-vector r, the positions of ions are determined by the
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Fig. 2 Arbitrary unit cell of
crystal lattice

radius-vectors ri = r + bi, where the radius-vectors bi determine the positions of
ions relative to the mass center of the cell.

Let us introduce the electrical characteristics of the unit cell: the total charge q,
the dipole moment d and the quadrupole moment Q, which are calculated by the
formulas

q =
∑

i

qi, d =
∑

i

qibi, q =
1

2

∑

i

qibibi. (40)

Note that the definition of the quadrupole moment (40) is not standard. Usually
another definition of quadrupole moment is introduced, namely

Q∗ =
∑

i

qi(3bibi − b2
iI), (41)

where I is the unit tensor. In crystals the total charge of the unit cell is equal to zero
whereas the dipole moment d and the quadrupole moment Q can be zero or non-zero
depending on the type of material. It is known that if the total charge and the dipole
moment are equal to zero then the quadrupole moment does not depend on the point
with respect to which it is calculated. This is true for both definitions of quadrupole
moment.

To describe the kinematics of the unit sell we introduce the displacement vectors
of ions ui. Further all displacements are supposed to be small and the following
representation for ui is used:

ui = u + ϕ × bi + ξi. (42)

Here u is the displacement vector of the center of the unit cell, ϕ is the vector of
small rotation of the unit cell as a rigid body, ξi are variables characterizing the
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deformation of the unit cell. We suppose the ion displacements associated with the
deformation of the unit cell to be much less than the ion displacements connected with
the movement of the cell as a rigid body. In other words, we assume that |ξi| � |u|

and |ξi| � |ϕ × bi|. Let us introduce the polarization vector p:

p =
∑

i

qi(ϕ × bi + ξi). (43)

In view of Eq. (40) the formula (43) can be reduced to the form

p = pr + pd, pr = ϕ × d, pd =
∑

i

qiξi. (44)

Here pr is the polarization due to the rotation of the unit cell, and pd is the polarization
due to the deformation of the unit cell.

Now we write the expression for the rate of the energy change due to the work of
the electric field on the ions of unit cell:

ė =
∑

i

qiE(ri) · vi, (45)

where vi = u̇i is the velocity vector of the ion with the number i. Assuming that
the electric field slowly varies over distances comparable with the characteristic
dimensions of the unit cell we use the expansion of vector E in a Taylor series.
Keeping the first three terms in the Taylor series we have

E(ri) ≈ E(r) + bi · ∇E +
1

2
bibi · · ∇∇E. (46)

Using Eqs. (42), (46) we reduce the expression for the rate of energy change (45) to
the form

ė ≈ (d · ∇E + Q · · ∇∇E) · u̇ +
(
d × E + 2Q · ×∇E

) · ϕ̇ + E · ṗd. (47)

The formula (47) is derived in view of the fact that the total charge of the unit cell is
equal to zero, and also |ξi| � |u| and |ξi| � |ϕ × bi|.

3.2 Polarization of Continuous Medium

Now we write the analogue of Eq. (47) for the continuous medium. In order to pass
from the discrete model to the corresponding continuum model we use standard line
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of reasoning based on symmetry properties of the crystal lattice and the long-wave
approximation. The description of the method can be found in [19]. Application of
this method in the case when the rotational motion and moment interaction are taken
into account is discussed in [20]. Thus, the continuous analogue of Eq. (47) is

Ė ≈ (Ps · ∇E + Q · · ∇∇E) · u̇ +
(
Ps × E + 2Q · ×∇E

) · ϕ̇ + E · Ṗ
p

. (48)

Here the parameters of the medium Ps (volume density of spontaneous polarization)
and Q (volume density of the quadrupole moments) are

Ps = lim
ΔV→0

∑

k∈ΔV dk

ΔV
, Q = lim

ΔV→0

∑

k∈ΔV qk

ΔV
, (49)

and the volume density of piezoelectric polarization Pp being one of the basic
variables is introduced by the formula

Pp = lim
ΔV→0

∑

k∈ΔV pdk

ΔV
. (50)

We suppose the electric field to be an external factor. The power of external actions
per unit volume is equal to ρF · u̇ + ρL · ϕ̇. The corresponding power of the electric
field action is equal to that part of the rate of energy change Ė which depends on the
translational velocity u̇ and the angular velocity ϕ̇. Thus, we obtain

ρF · u̇ + ρL · ϕ̇ = (Ps · ∇E + Q · · ∇∇E) · u̇ +
(
Ps × E + 2Q · ×∇E

) · ϕ̇. (51)

Comparing the left-hand and the right-hand sides of Eq. (51) we conclude that the
coefficient of u̇ on the right-hand side of the equation can be associated with a body
force and the coefficient of ϕ̇ on the right-hand side of the equation can be associated
with a body moment:

ρF = Ps · ∇E + Q · · ∇∇E, ρL = Ps × E + 2Q · ×∇E. (52)

In the case of non-polar piezoelectrics Ps = 0 and the expressions (52) take the
simpler form

ρF = Q · · ∇∇E, ρL = 2Q · ×∇E. (53)

The last term in Eq. (51) can be associated with the quantity Q characterizing the
energy supply from an external source that cannot be expressed in terms of the power
of external forces and moments:

Q = E · Ṗ
p

. (54)
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3.3 Equations of Non-Polar Piezoelectric Medium

In view of the expressions for external force and moment (53) the equations of motion
of the non-polar piezoelectric medium in the linear approximation take the form

∇ · τ −
1

2
∇ × q + Q · · ∇∇E = ρü, (55)

∇ × m + q + 2Q · ×∇E = ρJ · ϕ̈. (56)

Introducing electric induction vector D by means of Eq. (17) we write the equation
of electrostatics (19) as

∇ · [
ε0E + Pp

]
= 0. (57)

Starting from the energy balance equation in the form of Eq. (21) and using the
line of reasoning similar to those which were held in the case of polar medium we
obtain the heat conduction Eq. (27) and the reduced energy balance equation

ρU̇ = τe · · ġ − qe · θ̇ − me · γ̇ + E · Ṗ
p

+ ϑḢ . (58)

Note that Eq. (58) is derived in view of the expression (54) for the rate of energy
supply from an external source. The Cauchy–Green relations which follow from
Eq. (58) are

τe =
∂ρU

∂g
, qe = −

∂ρU

∂θ
, me = −

∂ρU

∂γ
, E =

∂ρU

∂Pp , ϑ =
∂ρU

∂H
. (59)

The internal energy is assumed to be the positive defined quadratic form

ρU =
1

2
g · · C(g) · · g +

1

2
θ · C(θ) · θ +

1

2
γ · C(γ) · γ

+
1

2
Pp · C(P) · Pp +

1

2
C(H )H 2 + θ · C(θg) · · g + γ · C(γg) · · g

+ Pp · C(Pg) · · g + H C(H g) · · g + γ · C(γθ) · θ + θ · C(θP) · Pp

+ H C(H θ) · θ + Pp · C(Pγ) · γ + H C(H γ) · γ + H C(H P) · Pp.
(60)

Substituting Eq. (60) into the Cauchy–Green relations (59) we get

τe = C(g) · · g + θ · C(θg) + γ · C(γg) + Pp · C(Pg) + C(H g)H ,

−qe = C(θg) · · g + C(θ) · θ + γ · C(γθ) + C(θP) · Pp + C(H θ)H ,

−me = C(γg) · · g + C(γθ) · θ + C(γ) · γ + Pp · C(Pγ) + C(H γ)H , (61)
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E = C(Pg) · · g + θ · C(θP) + C(Pγ) · γ + C(P) · Pp + C(H P)H ,

ϑ = C(H g) · · g + C(H θ) · θ + C(H γ) · γ + C(H P) · Pp + C(H )H .

In order to close the set of equations (22), (23), (27), (55)–(57), (61) the constitutive
equations for the dissipative parts of force and moment stresses τf, qf, mf should
be formulated.

3.4 Comparison with the Classical Theory

To compare the theory stated above with the classical theory of piezoelectricity we
leave out the thermal effects and moment interactions and neglect the inertia of
rotation. Since μ = 0, J = 0 the angular momentum balance equation (56) takes the
form

q = −2Q · ×∇E. (62)

In view of Eq. (62) the momentum balance equation (55) is reduced to the form

∇ · τ + Q · ∇∇ · E = ρü. (63)

In view of the foregoing assumptions the constitutive equations (61) can be rewritten
as

τ = C(g) · · g + θ · C(θg) + Pp · C(Pg),

−q = C(θg) · · g + C(θ) · θ + C(θP) · Pp, (64)

E = C(P) · Pp + C(Pg) · · g + θ · C(θP),

where indices e of tensor τ and vector q are left out because the dissipative part
of these tensors are equal to zero. Further two versions of the simplified theory are
considered.

Variant 1. We suppose that the shear strain θ is equal to zero, but the corresponding
part of the stress tensor determined by vector q is a finite quantity. Then the constitu-
tive equations (64) take the simpler form. In view of Eq. (17) the obtained constitutive
equations can be reduced to Eq. (38) where tensors C, M, ε are expressed in terms
of the material tensors introduced above. Thus the first variant of the simplified the-
ory is the set of equations of piezoelectricity (19), (38), (63) which differs from the
classical one only by the term Q ·∇∇ ·E in the equation of motion (63). Substituting
the first equation in Eq. (38) into Eq. (63) we obtain

∇ · (C · · g) − ∇E · ·M + Q · ∇∇ · E = ρü. (65)
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In the case of long-wave processes the contribution of the term Q · ∇∇ · E is small
compared to the contribution of the term ∇E·· M. However, in the case of short-wave
processes the contribution of the term Q · ∇∇ · E can be significant.

Variant 2. The case when θ �= 0 is considered. By the simple transformations in
view of Eqs. (17), (62) the constitutive equations (64) are reduced to the form

τ = C · · g − E · M + N · · ∇E, D = M · · g + ε · E − ε · ·∇E. (66)

Here tensors C, M, N, ε, ε can be expressed in terms of the material tensors
introduced above by the complicated formulas. It is easy to see that the constitutive
equations (66) differ from the classical ones by the terms containing ∇E. Now it is
impossible to quantify the contribution of these terms since to determine the tensors
N and ε the physical experiments should be carried out. However, it is clear that
in the case of short-wave processes the relative contribution of the terms containing
∇E is greater than in the case of long-wave processes.

4 Conclusion

Above two micro-polar theories of piezoelectricity based on the continuum with
internal degrees of freedom are considered. One of these theories describes the polar
piezoelectric materials, and the other describes the non-polar materials. In contrast to
the classical theory where the constitutive equations establish the relations between
the electric field vector E and the electric induction vector D, in the proposed micro-
polar theories the constitutive equations relate the electric field vector E and the
polarization vector Pp. It is proved that under certain simplifying assumptions the
proposed theories of piezoelectricity pass into the quasi-classical ones. The quasi-
classical theories differ from the classical theory of piezoelectricity by the presence of
additional terms of piezoelectric nature in the equations of motion and the constitutive
equations.
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