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In view of the evolution of nanotechnology, it is of
current interest to develop analytical models for
describing the mechanical deformation of nanodimen-
sional objects. The majority of available theoretical
models are based on elasticity-theory equations. In this
case, values of the modulus of elasticity obtained in
macroscopic experiments are commonly used. At the
same time, many investigators pointed to a discrepancy
between values of the modulus of elasticity obtained in
microscopic and macroscopic experiments (see, e.g.,
[1–3]). In [4], the Young’s modulus and Poisson’s ratio
were theoretically investigated as functions of the num-
ber of atomic layers by the example of a two-dimen-
sional single-crystal strip. It was shown that, with a
decreasing number of atomic layers, the Poisson’s ratio
decreases and the Young’s modulus increases and, for
two-layer crystalline films, can differ from their macro-
scopic values by a factor of 1/2 and 2, respectively. The
results [4] indicate that scale effects must be taken into
account when notions of continuum mechanics are
applied to nano-objects. In this study, we theoretically
investigated the effect of the scale factor on the bending
stiffness of a single-crystal strip. This problem is of
high priority because, in particular, it is necessary to
investigate the stress–strain state of nanotubes, which
are extensively used in current engineering applications
[5–8].

We consider a two-dimensional single crystal with
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 axis. Each atom is assumed to interact only with the
nearest neighbors (see figure). Forces 
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 are applied to
the atoms on the lateral faces of the crystal. The sub-
script 
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 means the layer number (
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 = 1, 2, …, 
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). From
one layer to another, forces vary linearly, so that the

summary load acting on the lateral crystal face provides
only the moment of force
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The strained state of the single crystal is completely
specified by spacings 

 

a

 

jn

 

 between the neighboring
atoms in each layer and by spacings 
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 between the
nearest atoms in the neighboring layers. The subscripts
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 and 
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 correspond to the numbers of layers along the 
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and 
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 axes, respectively (see figure). It is evident that
spacings 
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 between layers can be determined from the

geometric relationship 
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. In the

unstrained state, the crystal lattice consists of equilat-
eral triangles with sides 
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. This lattice is char-
acterized by the relations
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conditions (1) has the form

 

(2)

 

Let 

 

F

 

(

 

r

 

)

 

 be the force of interaction between two atoms
separated by distance 

 

r

 

. Assuming the smallness of
strains (displacements are magnified in the figure for
clearness) induced by the forces of interaction between
atoms in the crystal, we use the linear approximation
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where 
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 is the interatomic-bond rigidity, 
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. Such a simplified approach is jus-
tified by the fact that the modulus of elasticity in con-
tinuum mechanics is generally determined in linear the-
ory. It should be noted that the approach proposed here
can be realized even without the assumption that elastic
bonds are linear; the difficulties arising in this case are
of a purely technical nature. Writing the equations of
equilibrium for atoms of the crystal lattice, we obtain
the set of recurrence equations for the quantities 
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,
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, and 

 

Q

 

n

 

:
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The solution to these equations has the form

 

(5)

 

We conceptually cut the crystal by a vertical straight
line 

 

AB

 

 (see figure). According to Eqs. (2) and (5), the
total normal force acting from one part of the crystal to
the other is equal to zero. The total bending moment 

 

M

 

is calculated by Eq. (1). As can be seen from Eqs. (2)
and (5), a change in interatomic spacings 
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 linearly
depends on the layer number 

 

n

 

 along the 

 

y

 

 axis and is
independent of the layer number 

 

j

 

 along the 

 

x

 

 axis. This
means that the atomic layers along the 

 

y

 

 axis remain
rectilinear when the crystal is deformed, and the angles
between any neighboring atomic layers in the strained
state are identical. In this case, the angle 
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 between the
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neighboring atomic layers and the corresponding cur-
vature β are determined as follows:

(6)

According to Eqs. (2), (5), and (6), the bending stiffness
of the single-crystal strip has the form

(7)

Attempts to express bending stiffness in terms of mac-
roscopic parameters encounter difficulties associated
with the possibility of different definitions of the thick-
ness H of the nanocrystal. On the one hand, the single-
crystal thickness can be defined as the spacing H = (N –
1)h0 between atomic layers at opposite ends; on the
other hand, the nanocrystal thickness can be defined as
the product of the number of layers and the thickness of
one atomic layer: H = Nh0. Because it is difficult to give
preference to one of the formulated definitions, we
define nanocrystal thickness as [4]

(8)

where N∗  is a dimensionless parameter reflecting the
ambiguity in the determination of H. As is shown in [4],
the Young’s modulus E1 corresponding to extension
along the x axis of a single-crystal strip, which is infi-
nite in this direction, is calculated by the formula

(9)

Here, E∞ is the Young’s modulus of the infinite crystal
[9, 10]. It should be noted that we consider a strip finite
along the x axis. However, the number of atomic layers
along this direction is assumed to be so large that
Eq. (9) can be used. Using Eqs. (8) and (9), we express
bending stiffness (7) of the single-crystal strip in terms
of its macroscopic parameters:

(10)

Experimental data indicate that the bending stiffness of
a single-layer strip is 25 times lower than the value
obtained by the formula of elasticity theory [11].
Indeed, a single-layer chain of atoms must have no
bending stiffness from the classical viewpoint. There-
fore, it should be considered that the most acceptable
values of N∗  in bending problems are those for which
the bending stiffness D vanishes at N = 1 (a low exper-
imentally observed bending stiffness is associated with
the effects ignored in the model under consideration).
We consider two N∗ -values satisfying the above con-
dition.
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First, we assume that N∗  = N. In this case, E1 = E∞

and bending stiffness is defined by the formula

(11)

Here, D∞ is the bending stiffness of the strip known
from macroscopic elasticity theory. According to
Eq. (11), the bending stiffness of the nanocrystal varies
within the interval 0 ≤ D ≤ D∞. For small N, this stiff-
ness substantially depends on the number of atomic
layers. It increases with N and tends to its elasticity-the-
ory value for N  ∞.

On the other hand, we assume that

The parameter N∗  introduced in such a way satisfies
inequality (8): N – 1 ≤ N∗  ≤ N. In this case, the bending
stiffness and the thickness of the nanocrystal are
expressed as

(12)

It is easy to see that the expression for bending stiffness
exactly coincides with the elasticity-theory expression.
The strip-thickness expression coincides, for large N,
with Nh0 corresponding to the previous case. For small
N, Eq. (12) gives thickness values lower than Nh0; for
N = 1, it vanishes as it must according to the concept
that a single-atom layer has zero bending stiffness.

An alternative way of determining bending stiffness
is to solve the problem of the deformation of a single-
crystal strip upon its bending into a ring. This problem
can be considered as linear in strains; however, it is geo-
metrically nonlinear in displacements. An advantage of
this formulation is the fact that it requires no assump-
tions about the nature of the external load. The expres-
sions for bending stiffness D obtained as a result of
solving the similar problem coincide exactly with
Eqs. (10)–(12).

The problem of determining the bending stiffness of
nanotubes was considered in the quasi-continuum for-
mulation in [5], where, for several particular N-values,
a strip bending stiffness which coincided with the
results calculated by Eq. (11) was determined. Strip
thickness was defined in [5] as H = h0N, which is
responsible for the discrepancy between bending stiff-
ness and its elasticity-theory value. However, as was
shown above, the application of the alternative defini-
tion of plate thickness makes it possible to use the mac-
roscopic formula for bending stiffness without any
modifications.
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