
 

1028-3358/05/5002- $26.00 © 2005 Pleiades Publishing, Inc.0083

 

Doklady Physics, Vol. 50, No. 2, 2005, pp. 83–87. Translated from Doklady Akademii Nauk, Vol. 400, No. 4, 2005, pp. 475–479.
Original Russian Text Copyright © 2005 by Ivanova, Morozov.

 

The problem of the experimental determination of
elastic moduli of nanoscale objects is of present inter-
est. The determination of the elastic moduli of thin
macroscopic shells is usually based on experiments
with plates. It is known that, when grown using certain
techniques, nanoobjects are obtained only in the form
of shells. Therefore, it is necessary to develop a method
for determining the elastic moduli of nanoobjects on
the basis of experiments with shells. Experimental
determination of the bending stiffness of nanosize
shells presents a serious problem, because for such
widespread nanoobjects as nanotubes and fullerenes
under arbitrary deformation, the material is subjected to
both bending and tension. Therefore, all parameters
(e.g., natural frequencies) that can be measured directly
are complicated functions of both bending and tension
stiffness. In recent years, together with nanotubes and
fullerenes, nanoobjects of a more intricate configura-
tion have been obtained [1–4]. Nanosize cylindrical
helices [1, 3] are of particular interest in connection
with the possible experimental determination of bend-
ing stiffness. This is due to the fact that (1) in helical
shells under arbitrary deformation, the material is
mainly bent, so that the material tension effect can be
neglected when interpreting experimental data; and
(2) the natural oscillation shapes of helical shells are
much more easily observed than those of cylindrical
shells associated with pure bending of the material. The
latter statement is illustrated in Fig. 1, which presents
the first four helical shell oscillation shapes. The analy-
sis of helical shell dynamics [5] presented below may
be a theoretical foundation for experimental testing of
the applicability of the continuum theory to (a) the cal-
culation of mechanical characteristics of nanoobjects
and (b) the experimental determination of the bending
stiffness of nanoshells.

BASIC EQUATIONS 
OF THIN SHELL THEORY

We present here a summary of basic equations from
the classical linear theory of shells. For the sake of
brevity, we use the apparatus of direct tensor calculus
[6, 7]. The dynamic equations have the form
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the surface mass density; and 

 

u

 

 is the displacement vec-
tor. In the classical theory of shells, the transverse shear
strain vector is assumed to be zero. Thus, the angle-of-
rotation vector  can be expressed in terms of the dis-
placement vector as
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 is the unit normal vector to the shell surface.
The transverse force vector 
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 is determined
from dynamic equations (1). The elasticity equation for
the force tensor in the tangent plane  ·  has the form
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Fig. 1. 

 

Oscillation shapes of a helical cylindrical shell.



 

84

 

DOKLADY PHYSICS

 

      

 

Vol. 50

 

      

 

No. 2

 

      

 

2005

 

IVANOVA, MOROZOV

 

has the form

 

(4)

 

Here  and 

 

 

 

are the shell stiffness tensors,  is the

unit tensor in the tangent plane, 
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,

and the tension–shear strain tensor  in the tangent

plane and the bending–torsion strain tensor  are cal-

culated by the formulas

 

(5)

 

HELICAL SHELL GEOMETRY

We will consider a cylindrical helical shell (Fig. 2)
of radius 

 

R

 

 with helix angle 

 

α

 

, helix-forming band
length 

 

l

 

, band width 

 

a

 

, and band thickness 

 

h

 

. Shell kine-
matics will be described below using two coordinate
systems: a cylindrical coordinate system 

 

r

 

 

 

≡

 

 

 

R

 

, 

 

ϕ

 

, 

 

z

 

,
where the 

 

z

 

 axis is directed along the helix axis; and a
curvilinear coordinate system 

 

s

 

, 

 

ζ

 

 introduced on the
shell surface as follows:

 

(6)

MT C4  · · κ.== = =

A4

= C4

= a
=

b= c= a
=

ε=
κ
=

ε 1
2
--- ∇u( ) a a ∇u( )T⋅+⋅( ),=

κ ∇ϕ( ) a
1
2
--- ∇u( ) · · c( )b.+⋅=

= = =

= ===

z R αssin αζcos+( ), ϕ αs αζ.sin–cos= =

 

The dimensionless coordinates 

 

s

 

 and 

 

ζ

 

 vary within the
following limits
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The unit vectors 

 

e

 

s

 

 and 

 

e

 

ζ

 

 directed along the coordinate
lines and the unit vector 

 

n

 

 determining the direction of
the outward normal to the shell surface have the form

 

(8)

 

APPROXIMATE EQUATIONS
GOVERNING THE DYNAMICS 
OF A THIN HELICAL SHELL

It is known that the tensor  of the tension–shear

stiffness of the shell in the tangent plane is proportional

to the shell thickness 

 

h

 

, while the tensor  of the bend-

ing–torsion stiffness is proportional to h3 . Therefore, in

the case  � 1 and  � 1, the helical shell under con-

sideration can be treated as inextensible. Thus, we will
assume that the tension–shear strain tensor in the tan-
gent plane is equal to zero

(9)

In this case  → ∞, elasticity equation (3) becomes

meaningless, and the force tensor in the tangent plane
 ·  is determined from dynamic equations (1) with

regard to the strain compatibility equation

(10)

where ν is the Poisson’s ratio. We note that the continu-
ity equation (10) follows from the assumption that the
tension–shear strain is absent in the tangent plane.
Thus, the problem is reduced to the solution of the sys-
tem of equations (1), (2), (4), (5), (9), and (10), where

the bending–torsion stiffness tensor  has the form

(11)
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Fig. 2. Helical cylindrical shell.
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SOLUTION OF THE DYNAMIC EQUATIONS
FOR A THIN HELICAL SHELL

The displacement vector is represented in the form
of the decomposition in the u = uses + uζeζ + wn basis.
The displacement w along the normal to the shell sur-
face is chosen as the main variable. Using rather simple
transformations, we reduce the equations of shell
motion to the single differential equation

(12)

where  ≡ R2∆ is the dimensionless Laplace operator.
Representing condition (9) of the absence of tension–
shear strain from the tangent plane in the coordinate
form, we obtain the following relationship between the
displacement vector components:

(13)

and arrive at the following the strain compatibility
equation in displacements:

(14)

We note that Eq. (14) is a direct consequence of
Eqs. (13).

Thus, the problem is reduced to the determination of
solutions of dynamic equations (12) that satisfy an
additional constraint imposed by strain compatibility
equation (14). In the cylindrical coordinates [see
Eqs. (6)], strain compatibility equation (14) takes the
form

(15)

The solutions of dynamic equation (12) that satisfy
strain compatibility equation (15) can obviously be rep-
resented as

(16)

Substituting expressions (16) into dynamic equation (12)
and equating the coefficients of different powers of z to
zero, we obtain the system of two differential equations
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in the variables W1(ϕ) and W2(ϕ). Solving this system
and returning to the variables s and ζ, we obtain

(17)

where , , , and  are arbitrary constants and
λj are the roots of the characteristic equation

(18)

Here, Ω is the dimensionless natural frequency; for its
determination, some boundary conditions should be
formulated. As follows from Eqs. (17) and (18), the
dimensionless frequency Ω is independent of the phys-
ical characteristics of the shell ρ and D if these param-
eters do not enter into the boundary conditions.

FORMULATION OF THE BOUNDARY 
CONDITIONS. DETERMINATION 

OF THE NATURAL FREQUENCIES
OF OSCILLATIONS OF A THIN HELICAL SHELL

In accordance with Eq. (17), the function W(s, ζ)
involves twelve constants, which, naturally, make it
impossible to satisfy all the boundary conditions of the
classical theory of shells. However, the formulation of
twelve homogeneous equations specifying the dis-
placements or stresses at any point of the boundary is
sufficient for a formal solution of the problem within
the framework of the simplified formulation under con-
sideration.

We will assume that the shell is fixed at corners; i.e.,
the displacement vector u(s, ζ, t) = u∗(s, ζ)eiωt is zero at
the corner points

(19)

From the condition that the determinant of system (19)
is equal to zero, we obtain the frequency equation. As
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can be seen from Eqs. (13) and (15)–(18), the determi-
nant of system (19) depends on the dimensionless fre-

quency Ω and three dimensionless parameters α, ,

and . Therefore, the solution of the frequency equa-

tion represents a spectrum of dimensionless natural fre-
quencies of the form

. (20)

Numerical calculations of the natural frequencies
and shapes of helical shell oscillations with the dimen-

sionless parameters α = ,  = 20π, and  =1 showed

that the approximate theory specified by Eqs. (17)–(19)
adequately describes low-frequency oscillations.

DISCUSSION OF THE RESULTS

We will consider two thin helical shells with differ-
ent physical and geometric characteristics but the same

dimensionless parameters α, , and . We will

assume that both shells are fixed at corners; i.e., bound-
ary conditions (19) apply. In this case, in accordance
with Eq. (20), the spectra of the dimensionless natural
frequencies of shells under consideration coincide with

(21)

Then, in accordance with Eq. (18), the natural fre-

quency ratio  is independent of their ordinal num-

ber n

(22)

Relation (22) may serve as a theoretical basis for the
experimental investigation of the applicability of the
continuum theory to nanoobjects and, if the answer is
affirmative, for experimental determination of the
bending stiffness of nanoshells.

EXPERIMENTAL TESTING 
OF THE APPLICABILITY OF THE CONTINUUM 

THEORY TO NANOSCALE OBJECTS

To test the applicability of the continuum theory to
nanoobjects, the following measurements can be per-
formed:
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(1) several first natural frequencies of a helical
nanoshell are measured;

(2) the natural frequencies of a macroscopic helical

shell with the same dimensionless parameters 

 

α

 

, ,

 

and 

 

 

 

and the same fixation conditions are measured;

(3) the measured frequency ratios 

 

δ

 

n

 

 = 

 

 are cal-

culated.

If the continuum theory is applicable to nanoobjects,
then the equality 

 

δ

 

n

 

 = 

 

δ

 

1

 

 theoretically holds true for any

 

n

 

. The applicability condition for the continuum theory

is really formulated as the inequality ,

which must be fulfilled for 

 

∀

 

n

 

 

 

≤

 

 

 

N

 

. The permissible
error 

 

ε

 

N

 

 can be estimated by comparing with the results
of an analogous experiment performed with two mac-
roscopic helical shells.

EXPERIMENTAL DETERMINATION
OF THE BENDING STIFFNESS OF NANOSHELLS

If the continuum theory is applicable to nanoobjects,
then formula (22) makes it possible to experimentally
determine the bending stiffness of a nanoshell. In order
to determine the bending stiffness, it is necessary:

(1) to measure the first natural frequency  of the
helical nanoshell;

(2) to measure the mass 

 

m

 

1

 

 and the geometric
dimensions 

 

l

 

1

 

, 

 

a

 

1

 

,

 

 and 

 

R

 

1

 

 of the nanoshell and to calcu-

late its surface density 

 

ρ

 

1

 

 = 

 

;

(3) to determine the characteristics 

 

, 

 

D

 

2

 

, 

 

ρ

 

2

 

, and

 

R

 

2

 

 of a compared macroscopic helical shell with the

same dimensionless parameters 

 

α

 

, 

 

, 

 

and 

 

 

 

and the

same fixation conditions as those of the nanoshell under
study;

(4) to calculate the bending stiffness of the
nanoshell 

 

D

 

1

 

 using formula (22).

We note that the proposed approach to the experi-
mental determination of bending stiffness does not
require the determination of nanoshell thickness [8, 9].
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