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ON THE DETERMINATION OF THE FLEXURAL RIGIDITY OF NANOSHELLS 

E. A. Ivanova  and  N. F. Morozov  UDC 539.3 

In view of the development of nanotechnologies, the problem of determining the mechanical characteris-
tics of objects of the nanometer-size scale level becomes quite topical.  Most theoretical investigations in 
this field are based on the use of equations of the macroscopic theory of elasticity.  However, numerous 
researchers have noted a difference between the values of moduli of elasticity obtained from micro- and 
macroexperiments.  The present work is devoted to the development of theoretical foundations for the 
experimental determination of the flexural rigidity of nanoshells. 

Numerous researchers have noted a discrepancy between the values of moduli of elasticity obtained from 
micro- and macroexperiments.  The dependence of the values of Young’s modulus and flexural rigidity on the 
number of atomic layers of a single crystal was studied theoretically in [1, 3] on the example of a two-
dimensional single-crystal strip.  Comparison of the results [1, 3] shows that three expressions for flexural rigid-
ity, namely, (i) the relation known from the continual theory, (ii) the expression obtained by substituting 
Young’s modulus, calculated from the discrete model [3], in the formula of the continual theory, and (iii) the 
relation obtained directly from the discrete model [1], differ substantially for small numbers of atomic layers.  
Hence, the use of relations of the continual theory, ignoring the discrete properties of the material in the direc-
tion of nanoobject thickness, can lead to significant errors.  At the same time, it is clear that taking the discrete 
properties into account becomes inessential for those directions where the number of atomic layers is large.  
Therefore, most likely, the use of continual equations is admissible for the numerical analysis of nanoobjects.  
Thus, the development of a method for the direct determination of flexural rigidity without using any formulas 
relating it to the nanoobject thickness and Young’s modulus of the material represents an important problem.  In 
[2], a study of the dynamics of cylindrical spiral nanoshells [4, 5] was carried out, and, on this basis, a procedure 
was developed for the experimental verification of applicability of the continual theory for calculations of 
nanometer-size objects, and a method was proposed for the experimental determination of the flexural rigidity of 
nanoshells.  The main difficulty arising inevitably in the realization of the method proposed in [2] consists of 
fastening of the nanoobject.  The engineering problem is connected here with fastening of the nanoobject in such 
a way that the measured frequencies should be really the natural vibration frequencies of the specimen under 
study but not of the microobject on which the specimen is fastened.  To avoid these technical difficulties, one 
can apply the procedure described in what follows and based on the analysis of natural vibrations of a nanoob-
ject on a substrate. 

Basic Equations of the Theory of Elastic Shells 

We give here a list of the basic equations of the classical linear theory of shells (for brevity, we use the ap-
paratus of direct tensor calculus): 
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Here,  T   and  M   are the force and momentum tensors,  the vector invariant of a tensor is denoted by sign  

( �)� ,  �   is the surface density of mass,  u   is the displacement vector,  �   is the vector of rotation angles,  �   

is the tensor of tension-shearing strain in the tangential plane,  �   is the tensor of bending-torsion strain,  4 A   

and  4 C   are the tensors of shell rigidity,  n   is the vector of unit normal to the shell surface, and  a   is the unit 

tensor in the tangential plane. 

Flexural Vibrations of a Cylindrical Shell 

Consider a cylindrical shell of radius  R .  In the description of its kinematics, we use a cylindrical coordi-
nate system  r � R ,  � ,  z .  As is well known, the tensor of shell rigidity in tension and shear in the tangential 

plane  4 A   is proportional to the shell thickness  h ,  but the tensor of rigidity in bending and torsion  4 C   is 

proportional to  h3 .  Hence, in the case   h/R � 1 ,  we may consider the shell under study as inextensible.  Thus, 
we shall think that the tensor of tension-shearing strain in the tangential plane is equal to zero: 

 � = 0 . (2) 

We have here  4 A� � ,  the corresponding relation of elasticity loses its meaning, and the force tensor in the 

tangential plane  T �a   is determined directly from the dynamic equations.  The tensor of rigidity in bending and 

torsion  4 C   has the form 
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Here,  D   is the flexural rigidity of the shell,  a
2
= e� e� � ez ez ,  and  a

4
= e� ez + ez e� . 

Obviously, in the absence of tension-shearing deformation, all quantities characterizing the stress-strain 
state of the shell depend only on the polar angle  � .  As the main variable, we choose the displacement along a 
normal to the shell surface  w .  Then the problem of natural vibrations of the shell is reduced to the solution of a 
differential equation 
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The quantities characterizing the stress-strain state of our shell are connected with  w   by the relations 

 
�u�
��

= �w, �z =
1
R

u� �
�w
��( ), 1

R

�2T��

��2
+ T��

�

�
	

	

�

 = � 2� �

2w

�t 2
, 

 1
R

�T�r

��
+
�3T�r

��3
� 1

�

�
�

�



�

2

= �
�2

��2
� 1

�

��
�


�
�2w

�t 2
, M�z = �

D

R2
�2w

��2
+ w

�

��
�


�
. (5) 

The other components of vectors  u , �   and tensors  T , M   are identically equal to zero. 

Natural Vibrations of a System of Two Cylindrical Shells 

Consider a system of two cylindrical shells of equal lengths but different radii.  The shell of radius  R1 ,  

whose surface density and flexural rigidity are equal to  �1   and  D1 ,  models the nanoobject under study.  The 

shell of radius  R2 ,  whose surface density and flexural rigidity are equal to  �2   and  D2 ,  models the substrate, 

i.e., the microobject on which the nanoobject under study is situated.  We assume that the axes of these cylinders 
are parallel, and they join between themselves along the line  �   (see Fig. 1).  The angle  �   for each shell is 
counted off from the line of their joint anti-clockwise. 

The kinematic conditions of junction of the shells look like 
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The force conditions of junction of the shells have the form 
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The conditions of closure of the shells can be formulated as 

 

Fig. 1 
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where  k = 1, 2 .  The solutions of dynamic equations (4) for both shells have the following structure: 
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where  �   is the natural frequency,  Aj
(k )   and  Bj

(k )
  are arbitrary constants, and  �kj   are the roots of charac-

teristic equations 
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Substituting expressions (9) and (10) in Eqs. (5), we can find all quantities characterizing the stress-strain state 
of the shells.  Further, substituting the obtained solution in the boundary conditions (6) – (8), we obtain a homo-

geneous system of 12 algebraic equations in the constants  Aj
(k )   and  Bj

(k ) .  The condition of equality of the 

determinant of this system to zero gives the frequency equation.  We choose the dimensionless frequency  �2   

as the main variable.  Then the coefficients of the frequency equation will depend on three dimensionless pa-
rameters  R1 /R2 ,  �1 /�2 ,  and  D1 /D2 .  Hence, the solution of the frequency equation represents a spectrum of 

natural frequencies 
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A Method for the Experimental Determination of the Flexural Rigidity of Nanoshells 

Consider two systems of cylindrical shells with different physical and geometrical characteristics but with 
identical conditions of fastening (6) – (8) and equal dimensionless parameters 
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The first system consists of nano- and microshell.  The natural frequencies of this system are denoted by  �n
(1) .  

The second system consists of micro- and macroshell, and its natural frequencies are denoted by  �n
(2) .  Accord-

ing to (11) and (12), the spectra of dimensionless natural frequencies of the systems under consideration coin-
cide: 
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and the true natural frequencies of these systems  �n
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(2)   are connected with their dimensionless fre-
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As follows from (13) and (14), the ratio between the natural frequencies  �n
(1) /�n

(2)   is independent of their or-

dinal number  n : 
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Thus, relations (12) and (15) can serve as a theoretical foundation for the experimental determination of the 
flexural rigidity of nanoshells.  For determining flexural rigidity, it is necessary to carry out the following meas-
urements and calculations: 

 (i) to measure several first natural frequencies of the system of nano- and microshell  �n
(1) ; 

 (ii) to take, for comparison, the system of micro- and macroshell and, changing the parameters of this sys-

tem and measuring its natural frequencies  �n
(2) ,  to achieve a situation where the ratios  �n

(1) /�n
(2)   

are independent of the ordinal number of frequencies  n ; 

 (iii) to find the flexural rigidities of micro- and macroshells and, using the last relation (12), to calculate 
the flexural rigidity of the nanoshell under consideration. 

Asymptotic Estimates 

The proposed method will be efficient if it is possible to realize it for a system where the sizes of the object 
under study are at least by an order of magnitude smaller than the substrate sizes.  In order that this experiment 
should be practically realizable, the relative differences between natural frequencies of the system nanoobject-

substrate  �n
(1)   and those for the substrate without the nanoobject  �n

(0)  

 �n =
�n

(1) � �n
(0)

�n
(1)

 (16) 

have to be within the limits of accuracy of the measuring instrument.  Let us evaluate the order of  �n .  Let  

�n
(0)   be the natural vibration frequencies of a cylindrical shell with parameters  R2 ,  �2 ,  and  D2 ,  for which 

boundary conditions are formulated in the form of closure conditions (8) and conditions 
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Obviously, the natural frequencies of the system of nano- and microshell  �n
(1)   will differ slightly from the 

natural frequencies of the microshell  �n
(0) .  Hence, we may represent the frequencies  �n

(1)   as 
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where  �   is a dimensionless small parameter.  Asymptotic analysis of system (5) – (10) shows that the intro-
duced small parameter is equal to 

 � =
�1R1

2

�2 R2
2

. (19) 

Relations (16) – (19) enable us to evaluate the order of relative difference between the frequencies of the 
system nanoobject-substrate and frequencies of the substrate without the nanoobject:  �n ~ � .  The existing 

measuring technology makes it possible to measure natural frequencies with a relative error of 10�4% .  The  �n   

value is at the limit of the resolution of measuring instruments if the linear sizes of nano- and microshell differ 
by 100 times. 

This work was carried out under support of grants of the President of Russian Federation Nos. MD-
4829.2007.1 and NSh-3081.2008.1. 
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