
Lecture 1

Elena Ivanova

Mathematics necessary for description of continua with
microstructure. Models of particles with complex structure as

the base of modeling continua with microstructure.

1 The direct tensor calculus

1.1 The basic definitions

The tensor calculus is the mathematical base of continuum mechanics. There exist
two approaches to the statement of tensor calculus. One of them is the coordinate
tensor calculus and other one is the direct tensor calculus. In what follows we use
the direct tensor calculus. Therefore a tensor is considered to be an element of the
linear space which is obtained by the special multiplication of vector spaces. The
formal product of two vectors ab is called the dyad. The tensor product is not
commutative: ab �= ba. The formal sum of several dyads

A = ab + cd + ef + ... (1)

is called the second-rank tensor if

ab + cd = cd + ab,

a(b + c) = ab + ac, (2)

(a + b)c = ac + bc,

(αa)b = a(αb).

The following linear operations are introduced for the second-rank tensors:

A = ab + cd, B = de + gh,

S = A + B = ab + cd + de + gh, (3)

αA = (αa)b + (αc)d = a(αb) + c(αd).

The zero second-rank tensor is defined as O = oa = ao, where o is the zero vector.
The second-rank tensor E is called the unit tensor if for an arbitrary vector x it

satisfies the following equation:

E · x = x · E = x. (4)

1



For any non-degenerate tensor A there exists single inverse tensor A−1 which is
defined as a solution of the equation

A · A−1 = A−1 · A = E. (5)

The formal product of three vectors abc is called the triad. The formal sum of
several triads

3A = abc + def + ... (6)

is the third-rank tensor. The tensors of rank n are introduced analogously.

1.2 The basic operations with tensors

Let us represent tensors A and B as follows: A =
∑

k

akbk, B =
∑

l

dlf l.

The scalar product of tensor and vector:

A · c =
∑

k

ak (bk · c) , c · A =
∑

k

(c · ak)bk. (7)

The vector product of tensor and vector:

A × c =
∑

k

ak (bk × c) , c × A =
∑

k

(c × ak)bk. (8)

The tensor product of tensor and vector:

Ac =
∑

k

akbkc, cA =
∑

k

cakbk. (9)

The scalar product of tensors:

A · B =

(∑
k

akbk

)
·
(∑

l

dlf l

)
=

∑
k,l

(bk · dl)akf l. (10)

The vector product of tensors:

A × B =

(∑
k

akbk

)
×

(∑
l

dlf l

)
=

∑
k,l

ak(bk × dl)f l. (11)

The tensor product of tensors:

AB =
∑
k,l

akbkdlf l. (12)

The double scalar product of tensors:

A · ·B =

(∑
k

akbk

)
· ·

(∑
l

dlf l

)
=

∑
k,l

(bk · dl)(ak · f l). (13)
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The double vector product of tensors:

A ××B =

(∑
k

akbk

)
××

(∑
l

dlf l

)
=

∑
k,l

(bk × dl)(ak × f l). (14)

The scalar-vector product of tensors:

A ·×B =

(∑
k

akbk

)
·×

(∑
l

dlf l

)
=

∑
k,l

(bk · dl)(ak × f l). (15)

The vector-scalar product of tensors:

A ×·B =

(∑
k

akbk

)
×·

(∑
l

dlf l

)
=

∑
k,l

(ak · f l)(bk × dl). (16)

The scalar trA calculated according to the rule

trA =
∑

k

ak · bk (17)

is called trace of tensor A.
The vector A× calculated according to the rule

A× =
∑

k

ak × bk (18)

is called vector invariant of tensor A.

1.3 The orthogonal tensors

The second-rank tensor Q satisfying the equation

QT · Q = Q · QT = E (19)

is called orthogonal tensor. The determinant of orthogonal tensor is calculated as
follows:

det(QT · Q) = 1 ⇒ detQ = ±1. (20)

The orthogonal tensor whose determinant is equal to +1 is called the properly
orthogonal tensor or the rotation tensor.

1.4 The rotation tensor: representation and properties

Let us introduce two orthonormal bases: the starting basis e1, e2, e3 and a new basis
e′

1, e
′
2, e

′
3. The rotation tensor P transferring the starting basis into the new basis

can be represented in the form

P = e′
1e1 + e′

2e2 + e′
3e3. (21)
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If we operate on a vector a by the rotation tensor P we obtain

a′ = P · a = (e′
kek) · (emam) = ake

′
k, (22)

where vector a′ is called rotated vector. The rotated tensor A′ is defined by the
relation

A′ = a′b′ + ... + c′d′ = P · (ab + ... + cd) · PT = P · A · PT . (23)

The following identities are useful:

(P · a) · (P · b) = a · b, (P · a) × (P · b) = P · (a × b). (24)

1.5 Differentiation of tensor functions

Let f(X) be a tensor function. If there exists such tensor ∂f/∂X ∈ Tk+p that for
any tensor A ∈ Tk the relation

∂f

∂X
� AT =

∂f (X + αA)

∂α

∣∣∣∣
α=0

(25)

is valid then the tensor ∂f/∂X is called the derivative of tensor function f(X) with
respect to tensor argument X. The symbol � denotes the operation (abc)�(def) =
(c ·d)(b ·e)(a · f). The coordinate representation of the derivative of tensor function
is

∂f

∂X
=

∂fp...r(Xm...n)

∂Xm...n

ep . . . erem . . . en (26)

where ek are the basis vectors. Notice that the representation (26) is valid only
when the components of tensor Xm...n are independent.

1.6 The tensor fields

Suppose that the tensor field is given by function U(r) where r = xkek is the position
vector. The differential of U(r) can be written as

dU = dr · (∇U), ∇ = ek
∂

∂xk

(27)

where ∇ is the gradient operator. The divergence of U(r) and the rotor of U(r) are
determined as

∇ · U = ek ·
∂U

∂xk

, ∇× U = ek ×
∂U

∂xk

. (28)

Let us consider a volume V bounded by the surface S with external normal
vector n. The continuously differentiable tensor field U(r) is assumed to be defined
in the volume V . Then the divergence theorem is formulated as follows:∫

V

∇ · U dV =

∫
S

n · U dS. (29)
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2 Rigid bodies and dynamical structures

2.1 Kinematics of rigid bodies

In what follows we consider the models of continuum with the rotational degrees of
freedom. That is why we are starting from the description of motion of rigid bodies
and determination of the dynamical structures of rigid bodies.

Figure 1: Kinematics of a rigid body

Definition. If the distance between any two points of a body A does not change
during the body motion then the body A is called the rigid body.

From the definition of the rigid body it follows that the motion of the rigid
body is completely determined by the position vector RX(t) of an arbitrarily chosen
point X which is fixed in the body, and the rotation tensor P(t) characterizing the
rotational motion of the rigid body. The point X is called the pole.

The fundamental theorem of the rigid body kinematics is formulated as
follows:

R(t) = RX(t) + P(t) · (r − rX) ,

r = R(t0), rX = RX(t0), P(t0) = E,
(30)

where R(t) is the position vector of some point of the rigid body.
The time change of the position vector is characterized by the velocity vector

V(t) = Ṙ(t). The time change of the rotation tensor is characterized by the tensor
Ṗ(t). However, using of the spin tensor

S(t) = Ṗ(t) · PT (t) (31)

is more convenient. The spin tensor is the antisymmetric tensor. Any antisymmetric
tensor can be represented by means of the accompanying vector:

S(t) = ω(t) × E. (32)

Definition. The accompanying vector ω(t) of the spin tensor S(t) is called the
angular velocity vector.

The angular velocity vector satisfies the equation by Poisson:

Ṗ(t) = ω(t) × P(t). (33)
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2.2 Dynamical structures of rigid bodies

Kinetic energy, momentum and angular momentum are called the Dynamical struc-
tures of a body. Now we determine this quantities for the rigid body.

Figure 2: Dynamical structures of a rigid body

The elementary mass dm whose position is determined by the position vector
R(t) is assumed to be a point mass. Therefore the kinetic energy K(A) of the rigid
body, its momentum K1(A) and its angular momentum KQ

2 (A) calculated with
respect to the the point Q have the following form

K(A) =
1

2

∫
(m)

V(t) · V(t) dm, K1(A) =

∫
(m)

V(t) dm,

KQ
2 (A) =

∫
(m)

(
R(t) − RQ

)
× V(t) dm.

(34)

After transformations we obtain

K(A) =
1

2
mVX · VX + VX · mBX · ω +

1

2
ω · CX · ω,

K1(A) = mVX + mBX · ω,

KQ
2 (A)= (R(t)−RQ) × K1(A) +VX ·mBX +CX ·ω.

(35)

Here m is the mass of body A; mBX and CX are the inertia tensors of body A
determined by the formulas

BX =
[
RX(t) − RC(t)

]
× E = P(t) ·

[
(rX − rC) × E

]
· PT (t),

CX = P(t) ·
∫

(m)

[
(r − rX)2 E − (r − rX) (r − rX)

]
dm · PT (t).

(36)

where vector RC(t) determines the actual position of the mass center of body A,
and rC = RC(t0).

Tensor mBX is antisymmetric one and its value is determined by the mass of a
body and the radius-vector that extends from a pole to the mass center. The pole
coinciding with the mass center, tensor mBX is equal to zero.
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3 A body-point as the base model in the contin-

uum mechanics

3.1 Dynamical structures of a body-point

Constructing a model of continuum we will use a body-point as the base material
object. The body-point, unlike a point mass, undergoes to not only translational
but also rotational motions. The body-point is the material object occupying zero
volume in space. Position of a body-point is considered to be determined if the
position vector R(t) and the rotation tensor P(t) are assigned.

Definition. The kinetic energy of a body-point is a quadratic form of its trans-
lational and angular velocities:

K =
1

2
mv · v + v · mB · ω +

1

2
ω · mJ · ω. (37)

Here the second-rank tensors mB, mJ are the inertia tensors of a body-point and
m is the mass of a body-point respectively. The inertia tensors are frame-indifferent
characteristics of a body-point, therefore they should depend on rotation tensor P(t)
as

mB(t) = P(t) · mB0 · PT (t), mJ(t) = P(t) · mJ0 · PT (t), (38)

where mB0, mJ0 are the inertia tensors at the reference position, i. e. for those
values t0 at which P(t0) = E.

Definition. The momentum of a body-point is the linear form of its transla-
tional and angular velocities:

K1 =
∂K

∂v
= mv + mB · ω. (39)

Definition. The proper angular momentum (dynamic spin) of a body-point is
the linear form of its translational and angular velocities:

K2 =
∂K

∂ω
= v · mB + mJ · ω. (40)

Definition. The angular momentum of a body-point calculated with respect
to fixed reference point Q is defined by the following formula:

KQ
2 = (R − RQ) × ∂K

∂v
+

∂K

∂ω
. (41)

The first term on the right-hand side of Eq. (41) is the moment of momentum and
the second one is the dynamic spin.
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3.2 A point mass and the infinitesimal rigid body in con-
tinuum mechanics

In the momentless theories of continua (such as the classical theories of elasticity,
viscoelasticity and plasticity) the elementary volume of a continuum is considered to
be point mass. In the moment theories of continua (such as the rod theory, the shell
theory, the 3D Cosserat continuum, etc.) the elementary volume of a continuum
is considered to be infinitesimal rigid body. Thus inertia tensors in the continuum
mechanics have the same structure as the inertia tensors of macroscopic rigid bodies.

The theory of rectilinear beams and curvilinear rods. In the case of
rectilinear beam the mass center of a cross-section is on the middle line. Therefore
vector R(s) characterizing the position of the point of rod determines the position
of the cross-section mass center. Hence the inertia tensor B is equal to zero. In
the case of curvilinear rod the mass center of a cross-section is situated not on
the middle line. Then the inertia tensor B is not equal to zero and has the form:
B =

[
R(s) − RC(s)

]
× E.

Figure 3: Rectilinear beam and curvilinear rod

The theory of plates and shells. In the case of plate the mass center of a
filament is on the middle plane. Hence B = 0. In the case of shell the mass center
of a filament is situated on the middle surface. Then B is not equal to zero and has
the form: B =

[
R(x1, x2) − RC(x1, x2)

]
× E.

Figure 4: Plate and shell
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4 Body-point of a general kind

4.1 A body-point different from the infinitesimal rigid body

Let us consider a body-point whose inertia tensors are the spherical part of tensors
and the kinetic energy has the form

K = m

(
1

2
v · v + B̂ v · ω +

1

2
Ĵ ω · ω

)
. (42)

Here m is the mass of a body-point, B̂ and Ĵ are the moments of inertia. The
momentum and the proper angular momentum of a body-point are

K1 = m (v + B̂ ω), K2 = m (B̂ v + Ĵ ω). (43)

It is important to notice that the body-point (42), (43) differs from the infinites-
imal rigid body by the additional parameter B̂ which equals to zero in the case
of rigid body. For the first time the body-point (42), (43) has been introduced by
P. A. Zhilin.

4.2 Ground of the model of body-point of a general kind

We consider the material system (see Fig. 5) consisting of the frame and N rigid
bodies attached to the frame by means of elastic springs. For simplicity we suppose
that all bodies can move only in the line of axis x and rotate only on axis x.

We introduce following notations: m, J , x, ϕ are the mass, the moment of inertia,
the displacement and the angle of rotation of the frame; mi, Ji are the mass and
the moment of inertia of rigid body number i; xi, ϕi are the displacement and the
angle of rotation of rigid body number i relative to the frame.

The springs are considered to be elastic helical lines whose property consists in
the fact that when twisting in one direction they become longer and when twisting
in the opposite direction they shorten. Conformably, when stretching and pressing
the springs become twisted in different directions. We suppose that the internal
energy Ui of spring number i as well as the force Fi and the twisting moment Mi

modeling the influence of spring number i on the frame take the form:

Ui = Ui(xi + χϕi),

Fi =
∂Ui

∂xi

, Mi =
∂Ui

∂ϕi

,
(44)

where χ is the coefficient, characterizing the difference of the elastic spring under
consideration from analogous spring possessing the axial symmetry. Objects sim-
ilar to considered spring are usually called chiral objects. Therefore we call χ by
coefficient of chirality.

As evident from Eq. (44), the force and the twisting moment can be represented
by means of derivative of the internal energy with respect to its argument xi + χϕi.
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Figure 5: Particle possessing the internal structure

(In what follows we denote this derivative by stroke.) As a result the simple relation
between Mi and Fi can be brought to light:

Fi = U ′
i , Mi = χU ′

i ⇒ Mi = χFi. (45)

The equations of motion of the frame have the form:

mẍ = F +
N∑

i=1

Fi, Jϕ̈ = M +
N∑

i=1

Mi, (46)

where F and M are the external force and the external twisting moment acting on
the frame. The equations of motion of the rigid bodies are:

mi(x + xi)
·· = −Fi, Ji(ϕ + ϕi)

·· = −Mi, i = 1, N. (47)

Analysis of Eqs. (46), (47) shows that the translational and rotational motion of the
frame are interdependent. If there is no external moment acting on the frame and
the initial angular velocity is equal to zero, then because of the internal dynamics
of the system the frame become to rotate. If there is no external force acting on the
frame and the initial velocity is equal to zero, then because of the internal dynamics
of the system the frame become to move.

Example. We consider the motion of the system represented in Fig. 5 under
the action of the external force and twisting moment being linear time functions:

F = AF t, M = AM t, AF = const, AM = const. (48)

Taking into account (48) we write the equation of the frame motion (46) in the form:

mẍ = AF t +
N∑

i=1

Fi, Jϕ̈ = AM t +
N∑

i=1

Mi. (49)

For simplicity we suppose that all rigid bodies have the same masses mi = m∗/N
and the same moments of inertia Ji = J∗/N . Moreover, we suppose that the internal
energies of the springs Ui are the quadratic forms of deformations and all springs
have stiffness equal c. In that case:

Ui = c (xi + χϕi)
2 ⇒

⇒ Fi = c (xi + χϕi), Mi = χc (xi + χϕi).
(50)
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Taking into account (50) we rewrite the equations of the motion of the rigid bodies
(47) in the form:

m∗
N

(x + xi)
·· = −c (xi + χϕi),

J∗
N

(ϕ + ϕi)
·· = −χc (xi + χϕi).

(51)

From Eq. (51) we obtain:

(xi + χϕi)
·· + k2

∗ (xi + χϕi) = −(x + χϕ)··, k2
∗ = Nc

(
1

m∗
+

χ2

J∗

)
. (52)

By using Eqs. (50) for the forces Fi and the moments Mi the equations of motion
of the frame (49) can be reduced to the equivalent system including the equation

mẍ − J

χ
ϕ̈ = AF t − AM t

χ
(53)

and the equation

(x + χϕ)·· =
AF t

m
+

χAM t

J
+

k̃2

N

N∑
i=1

(xi + χϕi). (54)

From Eqs. (52), (54) we obtain the equation in x + χϕ :

(x + χϕ)···· + k2(x + χϕ)·· = k2
∗

(
AF t

m
+

χAM t

J

)
. (55)

Solving Eq. (55) we get the following expression for variable (x + χϕ)··

(x+χϕ)·· = (x+χϕ)
∣∣∣
t=0

cos(kt)+
1

k
(x+χϕ)·

∣∣∣
t=0

sin(kt)+
k2
∗

k2

(
AF t

m
+

χAM t

J

)
. (56)

Now we suppose that the oscillation period is much smaller than an observing
time on the motion process. In that case the characteristics of the motion averaged
over a period is interested for us:

x̄(t) =
k

2π

t+π/k∫
t−π/k

x(τ)dτ, ϕ̄(t) =
k

2π

t+π/k∫
t−π/k

ϕ(τ)dτ. (57)

By averaging over a period Eqs. (53), (56) we obtain:

m¨̄x − J

χ
¨̄ϕ = AF t − AM t

χ
,

¨̄x + χ ¨̄ϕ =
k2
∗

k2

(
AF t

m
+

χAM t

J

)
.

(58)
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Now we transform the system (58) to the following form:

m

(
1 +

Jk2

χ2mk2∗

)(
1 +

J

χ2m

)−1

¨̄x +
Jk̃2

χk2∗

(
1 +

J

χ2m

)−1

¨̄ϕ = AF t,

χmk̃2

k2∗

(
1 +

J

χ2m

)−1

¨̄x + J

(
1 +

Jk2

χ2mk2∗

) (
1 +

J

χ2m

)−1

¨̄ϕ = AM t.

(59)

Let us suppose that the mass and the moment of inertia of the frame are related by
the formula

J = χ2m. (60)

We introduce following notations:

m̂ =
m

2

(
1 +

k2

k2∗

)
, B̂ =

χmk̃2

2k2∗
, Ĵ =

J

2

(
1 +

k2

k2∗

)
. (61)

Taking into account Eqs. (60), (61) we rewrite the system (59) in the form:

m̂¨̄x + B̂ ¨̄ϕ = AF t, B̂ ¨̄x + Ĵ ¨̄ϕ = AM t. (62)

When the comparison of Eq. (62) describing the behavior of the average over
a period characteristics of the motion with the starting Eq. (49) is carried out we
see that the influence of the internal structure of the system on the motion of the
frame can be taken into account both by means of the internal forces and moments
and with the aid of the additional inertial parameters ensuring the interplay of the
translational and rotational motions.

4.3 Definition of the body-point of a general kind

The body-point of a general kind is defined by its kinetic energy which is a quadratic
form of translational and angular velocities of the body-point:

K =
1

2
v · mA · v + v · mB · ω +

1

2
ω · mJ · ω. (63)

Here the second-rank tensors mA, mB, mJ are the inertia tensors of a body-point
which depend on the rotation tensor P(t) as

mA(t) = P(t) · mA0 · PT (t), A0 = AT
0 ,

mB(t) = P(t) · mB0 · PT (t), B0 is arbitrary tensor,

mJ(t) = P(t) · mJ0 · PT (t), J0 = JT
0 .

(64)

Here mA0, mB0, mJ0 are the inertia tensors at the reference position.

Constructing model of continuum we can use the body-point of a general kind as
the base material object. The body-points of a general kind possess the additional
inertia characteristics as compared to the infinitesimal rigid body. Therefore the
continual models based on using body-points of a general kind will possess some
additional properties as compared to the known continual models.
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5 Particles with internal degrees of freedom

5.1 One-rotor gyrostat

The one-rotor gyrostat is a complex object which consists of the carrier body and
the rotor (see Fig. 6). The rotor can rotate independently of rotation of the carrier
body, but it can not translate relative to the carrier body.

Figure 6: One-rotor gyrostat

5.2 Multi-rotor gyrostat

The multi-rotor gyrostat is the complex object (see Fig. 7) consisting of the carrier
body and the rotors inside of the carrier body.

Figure 7: Multi-rotor gyrostat

5.3 Complex particles in continuum mechanics

It is the presence of additional rotational degrees of freedom and, accordingly, ad-
ditional inertia and elastic characteristics which can be interpreted as the non-
mechanical constants that distinguish the models based on the complex particles
among other continual models. If the mathematical description of some continual
model can be reduced to the known physical equations (for example, the heat con-
duction equation, the electrodynamics equations, etc.) then the continual model
can be considered as the mechanical model of the corresponding physical process.
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