
Lecture 5

Elena Ivanova

Application of the continuum model with microstructure
(continua with inner rotational degrees of freedom) to

description on the macro-level of electro-magnetic processes:
simplest theory leading to Maxwell’s equations.

1 The balance equations in Euler’s mechanics

Let us consider a collection of body-points Ai, which we call a body A (see Fig. 1).
All remaining body-points are called the environment of body A and denoted by a
symbol Ae.

Figure 1: Body A and its environment Ae

To model the action of the environment Ae on the body A we should assign a
pair of vectors: a force vector and a moment vector. The force and moment vectors
are additive on both the bodies compound the body A and the bodies compound
its environment Ae.

The equation of momentum balance. The rate in the momentum change
of body A is equal to the force acting on the body A from its environment plus the
rate of the momentum supply in body A, namely:

dK1(A)

dt
= F(A,Ae) + k1(A). (1)

Here F(A,Ae) is the force acting on the body A from its environment Ae, and k1(A)
is the rate of the momentum supply in body A.
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The equation of angular momentum balance. The rate in the angular
momentum change of body A, calculated with respect to a reference point Q, is
equal to the moment acting on body A from its environment, calculated with respect
to the same reference point Q, plus the rate of the angular momentum supply in a
body A, namely:

dKQ
2 (A)

dt
= MQ(A,Ae) + kQ

2 (A). (2)

Here MQ(A,Ae) is the moment acting on the body A from its environment Ae, and
kQ

2 (A) is the rate of the angular momentum supply in body A.

The energy balance equation. The rate in the total energy change of body
A is equal to the external force and moment power N(A,Ae) plus the rate of supply
of the energy of non-mechanical nature ε(A):

dE(A)

dt
= N(A,Ae) + ε(A). (3)

Here the total energy of a body E(A) is a sum of the kinetic energy K(A) and
the internal energy U(A). The power of external actions on body A consisting of
body-points Ai is the bilinear form of velocities and actions:

N(A,Ae) =
∑

i

[
F(Ai,Ae) · vi + L(Ai,Ae) · ωi

]
. (4)

It is important to notice that the power of external actions depends on the proper
moments L(Ai,Ae) rather than the full moments MQ(Ai,Ae).

2 Continuum consisting of multi-rotor gyrostats

2.1 Kinematics of the continuum

Figure 2: Multi-rotor gyrostat

The multi-rotor gyrostat (see Fig. 2) is a complex object which consists of the
carrier body and N rotors. The carrier body and the rotors of the gyrostat are con-
sidered to be the infinitesimal rigid bodies. The carrier body has an arbitrary tensor
of inertia. The rotors are the axisymmetric rigid bodies. The axes of symmetry of
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the rotors are fixed with respect to the carrier body. The rotors can not translate
relative to the carrier body, and they can rotate independently of rotation of the
carrier body only about their axes of symmetry.

Now we consider the material medium (see Fig. 3) consisting of multi-rotor gy-
rostats. Let vector r determine the position of some point of space. We introduce
following notations: v(r, t) is the velocity field; u(r, t) is the displacement field;
P0(r, t), ω0(r, t) are the fields of the rotation tensors and the angular velocity vec-
tors of the carrier bodies; Pi(r, t), ωi(r, t) are fields of the rotation tensor and the
angular velocity vector of the rotor number i, where i = 1, 2, ..., N .

Figure 3: Elementary volume of continuum consisting of multi-rotor gyrostats

In view of the fact that the rotor number i can rotate independently of rotation
of the carrier body only about its axis of symmetry the rotation tensor of the rotor
is represented in the form

Pi(r, t) = P0(r, t) · P(βini), (5)

where ni is the unit vector which determines the direction of the axis of symmetry
of the rotor at the reference position, βi(r, t) is the angle of rotation of the rotor
with respect to the carrier body. Hence the unit vector n′

i(r, t) which determines
the direction of the axis of symmetry of the rotor number i at the actual position
takes the form

n′
i(r, t) = P0(r, t) · ni. (6)

In the spatial description the angular velocity vector of the carrier body and
angular velocity vectors of the rotors are calculated by the formulas:

ω0 = −1

2

(
δP0

δt
· PT

0

)
×

, ωi = ω0 +
δβi

δt
n′

i, i = 1, 2, ..., N. (7)

2.2 The equations of motion

The multi-rotor gyrostat has N +6 degrees of freedom which are determined by the
following functions:

v(r, t), P0(r, t), βi(r, t), i = 1, 2, ..., N. (8)
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In order to find these unknown functions we need to formulate two vector and N
scalar equations of motion.

The momentum balance equation for the gyrostats has the form

∇ · τ + ρf = ρ
δv

δt
. (9)

Here τ is the stress tensor, f is the mass density of external forces, ρ is the mass
density which satisfies the mass balance equation

δρ

δt
+ ρ∇ · v = 0. (10)

The angular momentum balance equation for the gyrostats is

∇ · μ + τ× + ρL = ρ
δ

δt
L(r, t), (11)

where μ is the moment stress tensor, τ× is the vector invariant of the stress tensor,
L is the mass density of external moments, L is the mass density of the proper
angular momentum of the gyrostat

L = P0(r,t) · C · PT
0 (r,t) · ω0 (r,t) +

N∑
i=1

λi
δβi (r,t)

δt
n′

i (r,t) . (12)

The first term on the right-hand side of Eq. (12) is the mass density of the proper
angular momentum of the gyrostats when the gyrostats move as the rigid bodies,
i.e. all rotors are fixed with respect to the carrier body of the gyrostat. The rest
terms on the right-hand side of Eq. (12) characterize the influence of the independent
rotation of rotors on the proper angular momentum of the gyrostat. Tensor C is the
inertia tensor of the gyrostat at the reference configuration, λi is the axial moment
of inertia if the rotor number i.

We should add the system of equations (9), (11) to the angular momentum
balance equations for the rotors. The moment stress tensors characterizing the
interaction between rotors are supposed to be zero. Then the projections of the
angular momentum balance equations on the axes of the rotors take the form

λi
δ

δt

(
δβi (r,t)

δt
+ ω0 (r,t) · n′

i (r,t)

)
= Li, i = 1, 2, ..., N. (13)

Here Li is the mass density of external moments acting on the rotor number i. Let
Li take the form

Li = −νi

(
δβi

δt
− Ωi

)
, νi > 0, (14)

where Ωi = const and νi = const are the parameters of the particle. In relation
to engineering problems the moment of the form (14) is usually called the limited
power motor moment. The motor power is characterized by the parameter νi. The
parameter Ωi determines the nominal angular velocity of the rotor which is attained
under the action of the limited power motor moment.

Now we have two vector and N scalar equations of motion. The system of
equations is not closed. It is necessary to add these equations to the constitutive
equations. In order to obtain the constitutive equations we should consider the
equation of energy balance.
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2.3 Equation of energy balance

Now we formulate the equation of energy balance (3) for the material medium in
control volume V :

d

dt

∫
(V )

ρ(K + U)dV =

∫
(V )

ρ
(
f · v + L · ω0 + Q

)
dV +

+

∫
(S)

(
τ n · v + μn · ω0 + H(n)

)
dS −

∫
(S)

ρn · v(K + U)dS. (15)

Here U is the internal energy density per unit mass; τ n = n · τ , μn = n · μ;
quantities Q and Hn are the rate of the energy supply in volume and through
surface S respectively. The rate of the energy supply through the surface can be
expressed in term of energy-flux vector H by the formula Hn = n · H. The mass
density of kinetic energy for gyrostat has the form

K =
1

2
v · v +

1

2
ω0 · P0 · C · PT

0 · ω0 +
1

2

N∑
i=1

λi

[(
δβi

δt

)2

+ 2
δβi

δt
ω0 · n′

i

]
. (16)

By standard reasoning, taking into account the equation of mass balance (10)
we transform the equation of energy balance (15) to the local form

ρ
δ

δt
(K + U) = ρf · v + ρL · ω0 + (∇ · τ ) · v + (∇ · μ) · ω0+

+ τ T · ·∇v + μT · ·∇ω0 + ∇ · H + ρQ. (17)

Using expression (16) for the kinetic energy density and Eqs. (9)–(13) we transform
the energy balance equation (17) to the form

ρ
δU

δt
= τ T · · (∇v + E × ω0) + μT · ·∇ω0 + ∇ · H + ρQ − ρ

N∑
i=1

Li
δβi

δt
. (18)

Notice that the last term on the right-hand side of Eq. (18) plays role analogous
to the term ρQ. It has the sense of the rate of energy supply. In the case of the elastic
continuum the subsequent procedure of derivation of the Cauchy–Green relations is
standard for continuum mechanics.

3 Maxwell’s classical electrodynamics

In what follows we consider the model of electromagnetic field proposed by P. A. Zhilin.
Now we consider the simplest variant of this model whose mathematical description
is reduced to the Maxwell equations.

Let us consider the model discussed above accepting some simplifying assump-
tion. We suppose the processes to be isothermal (or adiabatic) only. Moreover, we
assume the following:

v = 0, τ = 0 ⇒ ρ = const. (19)
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In this case the material derivative coincides with the total time derivative. The
moment stress tensor μ is supposed to be antisymmetric one

μ = �−1B × E, � = const ⇒ ∇ · μ = �−1∇× B, (20)

where vector B is called the magnetic induction vector; � is a dimensional constant.
When accepted above restrictions the equation of momentum balance (9) becomes
an identity, and the angular momentum balance equation (11) takes the form

�−1∇× B + ρL = ρ
dL

dt
. (21)

The equation of energy balance takes the very simple form

ρ
dU

dt
= −�−1B · ∇ × ω0. (22)

We assume the angular momentum to have the simplest form

L = λω0, E = �c2ρL, c = const. (23)

Vector E introduced instead of the angular momentum vector is called the electric
field vector. The constant c is the velocity of light in free space.

The rotations are assumed to be small. In this case the angular velocity vector
can be expressed in terms of the vector of small rotation θ by the simplest formula

ω0 =
dθ

dt
⇒ E = �c2ρλ

dθ

dt
. (24)

Substituting Eq. (23) into Eq. (21) we obtain

∇× B + �ρL =
1

c2

dE

dt
. (25)

This equation was first derived by J. Maxwell, and the electric current density was
playing the role of the external moment �ρL:

�ρL = −μ0j = − 1

ε0c2
j, (26)

where j is the electric current density; μ0 is the the magnetic constant; ε0 is the the
dielectric constant.

According to generally accepted ideas the electric current density is the rate of
charge flow per unit area. Hence, the law of charge conservation takes place:

∇ · j = −dρ

dt
. (27)

By taking the divergence of both sides of Eq. (25) in view of Eq. (26) we obtain

d(∇ · E)

dt
= − 1

ε0

∇ · j. (28)
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Integrating Eq. (28) with respect to time and taking into account the law of charge
conservation (27) we obtain the Gauss law

∇ · E =
ρ

ε0

. (29)

Now we consider the energy balance equation (22). In view of Eq. (24) it takes
the form

ρ
dU

dt
= −�−1B · d

dt
∇× θ. (30)

We assume the internal energy to have the simplest form

U =
1

2
κ |∇ × θ|2, κ = const > 0. (31)

Then according to Eq. (30) we obtain the following expression for the magnetic
induction vector B:

B = −�ρκ∇× θ. (32)

It is easy to see that the Gauss law for the magnetic field

∇ · B = 0 (33)

follows from the constitutive equation (32).
Substituting Eqs. (24), (32) into Eq. (25) we can obtain the differential equation

for the rotation vector θ

κ (Δ θ −∇∇ · θ) + L = λ
d2θ

dt2
. (34)

However, we can choose another way. Eliminating the rotation vector from the
expression for the electric field vector E and the magnetic induction vector B we
obtain the following continuity equation:

∇× E = −dB

dt
, κ = λc2. (35)

This equation is known in physics as the Faraday law of induction. Maxwell’s
electrodynamics started from this equation. Maxwell himself has proposed Eq. (25).

Now we write down Eqs. (25), (29), (33), (35) as a system:

∇× E = −dB

dt
, ∇ · E =

ρ

ε0

,

∇× B + �ρL =
1

c2

dE

dt
, ∇ · B = 0.

(36)

Thus, we obtain Eqs. (36) which coincide with the classical Maxwell equations with
the only difference that there are partial derivatives with respect to time on the right-
hand side of the Maxwell equations whereas Eqs. (36) contains the total derivatives
with respect to time. Notice that the operators of partial differentiation with respect
to time are not objective. Therefore, from the viewpoint of classical mechanics these
operators can not be present in the equations describing some physical process.
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4 Concluding remarks

• Above we consider the continuum of a special type. By using the line of rea-
sonings standard for continuum mechanics we have derived the basic relations
describing this continuum and as a result we have obtained the close set of
equations (36) which coincide with the Maxwell equations.

• The equations (36) have a clear mechanical interpretation. This is important
because of the following reasons. Suppose that the classical Maxwell equations
do not satisfy us for some reason and they should be changed in some way.
This is not hypothetical assumption since it is known that the classical equa-
tions do not allow us to construct construct a consistent theory of the atom.
Therefore, changes are needed, but what exactly needs to be changed? The
classical equations do not answer this question. The presence of a mechanical
interpretation gives direction refinements.

• The mechanical sense of the equations (36) answers the question: “How the
Earth can move through an elastic medium (the luminiferous ether)?” (Lord
Kelvin, 1900). Above we consider the elastic medium which does not act on
bodies by forces since this medium can interact with bodies only by moments.
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