
Chapter 7

On one Model of Generalized Continuum and its
Thermodynamical Interpretation

Elena A. Ivanova

Abstract We consider the mechanical model of a two-component medium whose
first component is a classical continuum and the other one is a continuum having
only rotational degrees of freedom. We show that the proposed model can be used
for the description of thermal and dissipative phenomena. It is the presence of ad-
ditional rotational degrees of freedom and, accordingly, additional inertia and elas-
tic characteristics which can be interpreted as thermodynamical material parameters
that distinguish the proposed model among other continuum models. In special cases
the mathematical description of the proposed model is proved to reduce to the well-
known equations such as the heat conduction, the self-diffusion and the coupled
thermoelastic equations. The mathematical description of the proposed mechanical
model includes not only the classical formulation of the coupled problem of ther-
moelasticity but also the formulation of the coupled problem of thermoelasticity
with the hyperbolic type heat conduction equation. In the context of the introduced
theory we consider the original model of internal damping.

Key words: Micropolar media. Two-component continuum. Hyperbolic thermovis-
coelasticity.

7.1 Introduction

At present thermodynamics covers widespread frame including gas dynamics, ther-
moelasticity, thermoviscoelasticity, thermoelectric and thermomagnetic phenom-
ena, phase changes and chemical reactions. At the same time it constitutes a set
of scientific areas which are not connected to each other and differ by both the inter-
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pretation of the fundamental concepts and the applied mathematical methods. Deal-
ing with the mathematical methods we should refer to the thermodynamic potential
theory underlying the chemical and electrochemical thermodynamics, continuum
mechanics within the framework of which the models of thermoelastic and ther-
moviscoelastic media have been developed, the methods of crystal lattice dynamics
underlying the description of transport phenomena in solids, and also the classical
and quantum statistics [1, 2]. In view of the aforesaid it is important to develop a uni-
fied theory for the description of all thermodynamical phenomena which are studied
now in different science areas by using various methods. We are firmly convinced
that it can be made on the basis of the fundamental laws of mechanics by using the
continuum mechanics methods. The idea of the mathematical description of various
physical phenomena in microcosm by using the continual models based on rota-
tional degrees of freedom and the moment interactions was repeatedly asserted by
P. A. Zhilin [3, 4, 5, 6] and other authors – see e. g. [7, 8, 9]. The model proposed in
the present paper is a realization of this idea as applied to the description of thermal
and dissipative phenomena.

There exist different macroscopic and microscopic models of internal damping
[2, 10, 11, 12, 13]. The point of view that internal damping is concerned with ther-
mal effects is widespread. According to the quantum theory [2], the distribution of
phonons is in a local thermodynamical equilibrium and the temperature changes
adiabatically, when acoustic wave propagates. Consequently, regions separated by
the half-wavelength distance from one another have different temperatures and the
irreversible heat flow between these regions arises as a result of the heat conduc-
tion phenomena. This process causes transfer of energy of mechanical vibrations
into heat energy. We do not call in question the idea about interplay of the inter-
nal damping and thermal effects. We emphasize that analysis of the experimental
values of the volume (acoustic) viscosity and the shear viscosity of various sub-
stances shows that the viscosities are independent substance characteristics which
are not related to the heat-conduction coefficient and other thermodynamical param-
eters [14, 15, 16, 17]. However, we are sure that the internal damping and the heat
conduction mechanism have the same physical nature. In our opinion the internal
damping and heat conduction should be considered as a result of the interaction of
atoms with the infinite surrounding medium which can be called the “thermal field”
or the “thermal ether”. We propose the mechanical model “thermal ether” which is
a continuum of particles having translational and rotational degrees of freedom and
interacting by elastic moments. We consider two problems of elastic interaction of
the “thermal ether” with the particle having a special structure. As a result of analy-
sis of the problems we show that the influence of the “thermal ether” on the particle
can be modeled by the damping moment proportional to the angular moment of the
particle. Using of the damping moment in the model of a two-component medium
allows us to describe the internal damping and the heat conduction mechanism.
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7.2 The Simplest Model of a Body-point

We consider the material system (see Fig. 7.1) consisting of the frame and N rigid
bodies attached to the frame by means of elastic springs. For simplicity we suppose
that all bodies can move only in the line of axis x and rotate only on axis x. We
introduce following notations: m, J, x, ϕ are the mass, the moment of inertia, the
displacement and the angle of rotation of the frame; mi, Ji are the mass and the
moment of inertia of rigid body number i; xi, ϕ i are the displacement and the angle
of rotation of rigid body number i relative to the frame. The springs are considered
to be elastic helical lines whose properties consist in the fact that when twisting
in one direction they become longer and when twisting in the opposite direction
they shorten. Conformably, when stretching and pressing the springs they become
twisted in different directions. We suppose that the internal energy Ui of spring
number i as well as the force Fi and the twisting moment Mi modeling the influence
of spring number i on the frame take the form:

Ui =Ui(xi + χ ϕ i), Fi =
∂ Ui

∂ xi
, Mi =

∂ Ui

∂ ϕ i
, (7.1)

where χ is the coefficient, characterizing the difference of the elastic spring under
consideration from analogous spring possessing axial symmetry. Objects similar to
considered spring are usually called chiral objects. Therefore we call χ by coeffi-
cient of chirality.

As evident from Eqs (7.1), the force and the twisting moment can be represented
by means of the derivative of the internal energy with respect to its argument xi +
χ ϕ i

1. As a result the simple relation between Mi and Fi can be brought to light:

Fi =U ′i , Mi = χ U ′i ⇒ Mi = χ Fi. (7.2)

The equations of motion of the frame have the form:

Fig. 7.1 Particle possessing
the internal structure

1 In what follows we denote this derivative by prime.
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mẍ = F +
N

∑
i=1

Fi, J ¨ϕ = M+
N

∑
i=1

Mi, (7.3)

where F and M are the external force and the external twisting moment acting on
the frame. The equations of motion of the rigid bodies are:

mi(x+ xi)
·· =−Fi, Ji(ϕ + ϕ i)

·· =−Mi, i = 1,N. (7.4)

The analysis of Eqs (7.3) and (7.4) shows that translational and rotational motion of
the frame are interdependent. If there is no external moment acting on the frame and
the initial angular velocity is equal to zero, then because of the internal dynamics of
the system the frame starts rotating. If there is no external force acting on the frame
and the initial velocity is equal to zero, then because of the internal dynamics of the
system the frame starts moving.
Example 1. We consider the free motion of the system, represented in Fig. 7.1. Let
us introduce notations for total inertia characteristics of the internal bodies of the
system:

m∗ =
N

∑
i=1

mi, J∗ =
N

∑
i=1

Ji. (7.5)

For simplicity we suppose that all rigid bodies have the same masses mi = m∗/N
and the same moments of inertia Ji = J∗/N. Moreover, we suppose that the internal
energies of the springs Ui are the quadratic forms of deformations and all springs
have stiffness equal c. In that case:

Ui = c(xi + χ ϕ i)
2 ⇒ Fi = c(xi + χ ϕ i), Mi = χ c(xi + χ ϕ i). (7.6)

Taking into account Eqs (7.6) we rewrite the equations of motion of the rigid bodies
(7.4) in the form:

m∗
N

(x+ xi)
·· =−c(xi + χ ϕ i),

J∗
N

(ϕ + ϕ i)
·· =−χ c(xi + χ ϕ i). (7.7)

From Eqs (7.7) we obtain:

(xi + χ ϕ i)
··+ k2

∗ (xi + χ ϕ i) =−(x+ χ ϕ )··, k2
∗ = Nc

(
1

m∗
+

χ 2

J∗

)
. (7.8)

Provided that F = 0, M = 0 and Fi, Mi satisfy Eqs (7.6) the equations of the motion
of the frame (7.3) take the form:

mẍ = c
N

∑
i=1

(xi + χ ϕ i), J ¨ϕ = χ c
N

∑
i=1

(xi + χ ϕ i). (7.9)

The system of equations (7.9) can be rewritten in the more convenient form, namely
in the form of equation
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mẍ =
J
χ

¨ϕ , (7.10)

and equation

(x+ χ ϕ )·· = k̃2

N

N

∑
i=1

(xi + χ ϕ i), k̃2 = Nc

(
1
m
+

χ 2

J

)
. (7.11)

From Eqs (7.8) and (7.11) we obtain the equation in x+ χ ϕ :

(x+ χ ϕ )····+ k2(x+ χ ϕ )·· = 0, k2 = k2
∗+ k̃2. (7.12)

Taking into account the initial conditions we get the solution of the system (7.10),
(7.12) in the form:

x(t) = x|t=0 + ẋ|t=0 t

+
c

mk2

N

∑
i=1

[
(xi + χ ϕ i)

∣∣∣
t=0

(
1− cos(kt)

)
+(xi + χ ϕ i)

·∣∣∣
t=0

(
t− sin(kt)

k

)]
, (7.13)

ϕ (t) = ϕ |t=0 + ˙ϕ |t=0 t

+
χ c
Jk2

N

∑
i=1

[
(xi + χ ϕ i)

∣∣∣
t=0

(
1− cos(kt)

)
+(xi + χ ϕ i)

·∣∣∣
t=0

(
t− sin(kt)

k

)]
.

(7.14)

Now we introduce the quantities averaged over a period:

x̄(t) =
k

2π

t+π /k∫
t−π /k

x(τ )dτ

= x|t=0 + ẋ|t=0 t +
c

mk2

[
N

∑
i=1

(xi + χ ϕ i)
∣∣∣
t=0

+
N

∑
i=1

(xi + χ ϕ i)
·∣∣∣

t=0
t

]
,

(7.15)

¯ϕ (t) =
k

2π

t+π /k∫
t−π /k

ϕ (τ )dτ

= ϕ |t=0 + ˙ϕ |t=0 t +
χ c
Jk2

[
N

∑
i=1

(xi + χ ϕ i)
∣∣∣
t=0

+
N

∑
i=1

(xi + χ ϕ i)
·∣∣∣

t=0
t

]
.

(7.16)

Let us assume that we can observe on average values of the displacement and the
angle of rotation of the frame. The motion of the rigid bodies inside the frame is not
available for observation. In that case we will interpret the system under considera-
tion as a single whole particle (“body-point”). Then quantities x̄(t) and ¯ϕ (t) we will
consider as characteristics of the position and the orientation of the particle. Now
we discuss two variants of the initial conditions.
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Variant 1. The stiffness of springs connecting the internal bodies and the frame is
very large. In that case impact on the frame setting it in motion in the initial instant
of time will set the internal bodies in the same motion. Then it is reasonable to
assume that in the initial instant of time the relative displacements and angles of
rotation as well as the relative velocities of the internal bodies are equal to zero:

xi
∣∣
t=0 = 0, ϕ i

∣∣
t=0 = 0, ẋi

∣∣
t=0 = 0, ˙ϕ i

∣∣
t=0 = 0. (7.17)

In that case expressions for x̄(t) and ¯ϕ (t) are:

x̄(t) = x|t=0 + ẋ|t=0 t, ¯ϕ (t) = ϕ |t=0 + ϕ̇ |t=0 t. (7.18)

It is easy to see that the displacements and the angles of rotation determined by
Eqs (7.18) are independent.
Variant 2. The stiffness of springs connecting the internal bodies and the frame is
very small. Then impact on the frame setting it in motion in the initial instant of
time will not be passed to the internal bodies. Therefore we can assume that in the
initial instant of time the absolute displacements and angles of rotation as well as
the absolute velocities of the internal bodies are equal to zero:

(x+xi)
∣∣
t=0 = 0, (ϕ + ϕ i)

∣∣
t=0 = 0, (ẋ+ ẋi)

∣∣
t=0 = 0, ( ˙ϕ + ˙ϕ i)

∣∣
t=0 = 0. (7.19)

In that case expressions for x̄(t) and ¯ϕ (t) take the form:

x̄(t) =
[
1− µ

m

](
x|t=0 + ẋ|t=0 t

)
− χ µ

m

(
ϕ |t=0 + ˙ϕ |t=0 t

)
,

¯ϕ (t) =
[

1− χ 2 µ
J

](
ϕ |t=0 + ˙ϕ |t=0 t

)
− χ µ

J

(
x|t=0 + ẋ|t=0 t

)
,

(7.20)

where parameter µ having the dimension of mass calculated by the formula:

µ =

(
1
m
+

1
m∗

+ χ 2
[

1
J
+

1
J∗

])−1

. (7.21)

As evident from Eqs (7.20), the initial displacements and translational velocities of
the frame have an influence on its rotational motion, and the initial angles of rota-
tion and angular velocities of the frame influence have action upon its translational
motion.

Thus, based on the considered example we conclude that the presence or absence
of cross effect of the translational and rotational motions depend on the internal
structure and the parameters of the system.
Example 2. We consider the motion of the system represented in Fig. 7.1 under the
action of the external force and twisting moment being linear time functions:

F = AFt, M = AMt, AF = const, AM = const. (7.22)
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Taking into account Eqs (7.22) we write the equations of the frame motion (7.3) in
the form:

mẍ = AFt +
N

∑
i=1

Fi, J ¨ϕ = AMt +
N

∑
i=1

Mi. (7.23)

As in preceding example, we suppose that all rigid bodies have the same masses
mi = m∗/N and the same moments of inertia Ji = J∗/N. The elastic forces and mo-
ments characterizing the interaction of the rigid bodies and the frame are calculated
by Eqs (7.6). The equations of motion of the internal bodies (7.7), as well as their
sequent Eqs (7.8), are correct in the problem under discussion.

By using Eqs (7.6) for the forces Fi and the moments Mi the equations of motion
of the frame (7.23) can be reduced to the equivalent system including the equation

mẍ− J
χ

¨ϕ = AFt− AMt
χ

(7.24)

and equation

(x+ χ ϕ )·· = AFt
m

+
χ AMt

J
+

k̃2

N

N

∑
i=1

(xi + χ ϕ i). (7.25)

From Eqs (7.8) and (7.25) we obtain the equation in x+ χ ϕ :

(x+ χ ϕ )····+ k2(x+ χ ϕ )·· = k2
∗

(
AFt
m

+
χ AMt

J

)
. (7.26)

Solving Eq. (7.26) we get the following expression for the variable (x+ χ ϕ )··

(x+ χ ϕ )·· = (x+ χ ϕ )
∣∣∣
t=0

cos(kt)+
1
k
(x+ χ ϕ )·

∣∣∣
t=0

sin(kt)+
k2∗
k2

(
AFt
m

+
χ AMt

J

)
.

(7.27)
Now we suppose that the oscillation period is much smaller than an observing

time on the motion process. In that case the characteristics of the motion averaged
over a period is of interest for us:

x̄(t) =
k

2π

t+π /k∫
t−π /k

x(τ )dτ , ¯ϕ (t) =
k

2π

t+π /k∫
t−π /k

ϕ (τ )dτ . (7.28)

By averaging over a period Eqs (7.24) and (7.27) we obtain:

m ¨̄x− J
χ

¨̄ϕ = AFt− AMt
χ

, ¨̄x+ χ ¨̄ϕ =
k2∗
k2

(
AFt
m

+
χ AMt

J

)
. (7.29)

Now we transform the system (7.29) to the following form:
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m

(
1+

Jk2

χ 2mk2∗

)(
1+

J
χ 2m

)−1
¨̄x+

Jk̃2

χ k2∗

(
1+

J
χ 2m

)−1
¨̄ϕ = AFt,

χ mk̃2

k2∗

(
1+

J
χ 2m

)−1
¨̄x+ J

(
1+

Jk2

χ 2mk2∗

)(
1+

J
χ 2m

)−1
¨̄ϕ = AMt.

(7.30)

Let us suppose that the mass and the moment of inertia of the frame are related by
the formula

J = χ 2m. (7.31)

We introduce following notations:

m̂ =
m
2

(
1+

k2

k2∗

)
, B̂ =

χ mk̃2

2k2∗
, Ĵ =

J
2

(
1+

k2

k2∗

)
. (7.32)

Taking into account Eqs (7.31) and (7.32) we rewrite the system (7.30) in the form:

m̂ ¨̄x+ B̂ ¨̄ϕ = AFt, B̂ ¨̄x+ Ĵ ¨̄ϕ = AMt. (7.33)

By comparison of Eqs (7.33) describing the behavior of the average over a period
characteristics of the motion with the starting Eqs (7.23) we see that the influence
of the internal structure of the system on the motion of the frame can be taken
into account both by means of the internal forces and moments and with the aid
of the additional inertial parameters ensuring the interplay of the translational and
rotational motions.
Example 3. Now we study the motion of the considered system (see Fig. 7.1) under
the action of the external force and twisting moment being periodic time functions:

F = F0 sin(ω t), M = M0 sin(ω t), F0 = const, M0 = const. (7.34)

Taking into account Eqs (7.34) we write down the equations of the motion of the
frame (7.3) in the form:

mẍ = F0 sin(ω t)+
N

∑
i=1

Fi, J ¨ϕ = M0 sin(ω t)+
N

∑
i=1

Mi. (7.35)

After simple transformations similar to those carried out in the preceding example
we reduce the equation of the motion of the frame to the system of equations

mẍ− J
χ

¨ϕ =

(
F0− M0

χ

)
sin(ω t),

(x+ χ ϕ )·· = (x+ χ ϕ )
∣∣∣
t=0

cos(kt)+
1
k
(x+ χ ϕ )·

∣∣∣
t=0

sin(kt)

+
k2∗ − ω 2

k2− ω 2

(
F0

m
+

χ M0

J

)
sin(ω t).

(7.36)
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Now we suppose that the free period is much smaller than the period of force os-
cillations. Introducing the average over a period characteristics of the motion (7.28)
and averaging Eqs (7.36) over a period we obtain:

m ¨̄x− J
χ

¨̄ϕ =
k

π ω
sin
( π ω

k

)(
F0− M0

χ

)
sin(ω t),

¨̄x+ χ ¨̄ϕ =
k(k2∗ − ω 2)

π ω (k2− ω 2)
sin
( π ω

k

)(F0

m
+

χ M0

J

)
sin(ω t).

(7.37)

We suppose that ω � k∗ and, hence, ω � k. Moreover, the mass and the moment of
inertia of the frame are assumed to be related by Eq. (7.31). Then by using notations
(7.32) we can rewrite the system (7.37) in the form:

m̂ ¨̄x+ B̂ ¨̄ϕ = F0 sin(ω t), B̂ ¨̄x+ Ĵ ¨̄ϕ = M0 sin(ω t). (7.38)

By comparison of Eqs (7.38) describing the behavior of the average over a period
characteristics of the motion with the starting Eqs (7.35) we come to the conclusion
that the result is the same to that obtained in the preceding example. Namely, the
dynamics of the internal structure of the system has action upon the motion of the
frame and the influence in question can be taken into account by means of the ad-
ditional inertial parameters ensuring the interplay of the translational and rotational
motions.
Example 4. Now we study the motion of the considered system (see Fig. 7.1) under
the action of conservative load which is modeled by a linear elastic force. In that
case the equations of the frame motion (7.3) take the form:

mẍ =−CFx+
N

∑
i=1

Fi, J ¨ϕ =
N

∑
i=1

Mi, (7.39)

where CF is the stiffness of the elastic spring. The equations of the frame motion
(7.39) by using Eqs (7.6) and (7.8) can be reduced to the following system of equa-
tions:

mẍ− J
χ

¨ϕ =−CFx, (x+ χ ϕ )····+ k2(x+ χ ϕ )·· =−CF

m

(
ẍ+ k2

∗x
)
. (7.40)

It is easy to see that at the zero initial conditions lead the system (7.40) to the form:

mẍ+ B̂ ¨ϕ =−CF x, B̂ẍ+ Ĵ ¨ϕ =−CM ϕ , (7.41)

where constants B̂, Ĵ and CM are calculated by the formulae:

B̂=− J
χ
, Ĵ = J

[
J

χ 2m
+

CF

mk̃2
+

CF J

χ 2m2k̃2

]
, CM =

CF J

mk̃2

(
k2 +

Jk2∗
χ 2m

)
. (7.42)
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As evident from a comparison of Eqs (7.39) and (7.41) in the case of discussion
we can take into account the influence of the dynamics of the internal structure by
means of of the additional inertial parameters and of an external elastic moment
proportional to the angle of rotation of the frame.

Let us consider Eqs (7.33), (7.38) and (7.41). The quantities on the right-hand
side of the equations are the forces and the moments. Hence, the left-hand side of
Eqs (7.33), (7.38) and (7.41) can be interpreted as the derivatives of the momentum
and the angular momentum. Then the foregoing equations should be regarded as the
equation of motion of the particle whose momentum K1, the angular momentum K2

and kinetic energy K are:

K1 = m̂ẋ+ B̂ ˙ϕ , K2 = B̂ẋ+ Ĵ ˙ϕ , K =
1
2

m̂ẋ2 + B̂ẋ ˙ϕ +
1
2

Ĵ ˙ϕ 2, (7.43)

Consequently, parameter B̂ is the moment of inertia. The particle whose dynamic
structures are defined by Eqs (7.43) is a special case of the body-point proposed by
P. A. Zhilin – see [3].

7.3 Continuum of One-rotor Gyrostats

The material medium (see Fig. 7.2) consisting of one-rotor gyrostats is considered.
A one-rotor gyrostat consists of a rotor concealed in a rigid body which is called
“carrier body”. A rotor can rotate independently of the carrier body rotation, but a
rotor can not move independently the carrier body motion. A carrier body of the gy-
rostat is a classical rigid body, and a rotor is a non-classical particle whose properties
will be defined in what follows.

To derive the dynamic equations of the continuum we apply the spatial descrip-
tion. Let vector r determine the position of some point of space. We introduce fol-
lowing notations: ρ (r,t) is the mass density of the material medium at a given point
of space; v(r, t) is the velocity field; u(r, t) is the displacement field; P̃(r, t), ω̃ (r, t)
are the fields of the rotation tensors and the angular velocity vectors of the carrier
bodies; P(r,t) and ωωω (r, t) are fields of the rotation tensors and the angular velocity
vectors of the rotors.

The particles of continuum under consideration possess the internal degrees of
freedom. Therefore, in order to describe the motion of this continuum it is not suffi-
cient to formulate the balance equations of the momentum and the angular momen-
tum for the control volume of the continuum. It is necessary to add these equations
to the balance equation of the angular momentum for the rotors in control volume
of the continuum. Therefore below we need the densities of the momentum and the
angular momentum of the carrier bodies

ρ K(cb)
1 = ρ (1− ζ )v, ρ K(cb)

2 = ρ
[
r× (1− ζ )v+ I∗ · ˜ωωω

]
, (7.44)
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and the momentum and the angular momentum of the rotors

ρ K(rot)
1 = ρ (ζ v+Bωωω ), ρ K(rot)

2 = ρ
[
r× (ζ v+B ωωω )+Bv+ J ωωω

]
. (7.45)

Here I∗ is the inertia tensor of the carrier body of the gyrostat, B and J are the
moments of inertia of the rotor. Dimensionless parameter ζ in Eqs (7.44) and (7.45)
characterizes the distribution of mass in the gyrostat: if m is the mass of the gyrostat
then (1− ζ )m is the mass of its carrier body and ζ m is the mass of its rotor. Below
we will see that the value of parameter ζ is not important. The densities of the
momentum and the angular momentum of the gyrostats are

ρ K1 = ρ K(cb)
1 + ρ K(rot)

1 , ρ K2 = ρ K(cb)
2 + ρ K(rot)

2 . (7.46)

We assume that in the reference configurations the tensors P̃(r, t) and P(r, t) are
equal to the unit tensor. Therefore, upon the linearization near the reference position
they take the form

P̃(r, t) = E+ ϕϕϕ (r, t)×E, P(r,t) = E+ θθθ (r, t)×E, (7.47)

where ϕϕϕ (r,t), θθθ (r, t) are the rotation vector fields of carrier bodies and rotors, re-
spectively, E is the unit tensor. Kinematic relations in the linear approximation are

v =
du
dt

, ˜ωωω =
dϕϕϕ
dt

, ωωω =
dθθθ
dt

. (7.48)

The mass balance equation in the linear approximation takes the form

dρ
dt

+ ρ ∇ ·v = 0 ⇒ ρ = ρ ∗
(
1− ∇ ·u). (7.49)

Here ρ ∗ is the mass density per unit volume in the reference position. Note that
mass density at the initial time instant ρ 0 may not coincide with the mass density
in the reference position ρ ∗. These two quantities are related with each other by the

Fig. 7.2 Elementary volume
of continuum consisting of
one-rotor gyrostats
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formula
ρ 0 = ρ ∗

(
1− ∇ ·u0

)
, (7.50)

and they coincide only if the medium is not deformable at the initial time instant.
The equations of motion of the material continuum can be written in the form

∇ · τττ + ρ ∗f = ρ ∗
d
dt

(
v+Bωωω

)
, ∇ · µµµ + τττ ×+ ρ ∗m = ρ ∗

d
dt

(
I(0)∗ · ˜ωωω

)
, (7.51)

where inertia tensor I(0)∗ is calculated in the reference configuration. tensor τττ is the
stress tensor, and tensor µµµ is the moment stress tensor modeling the influence of
surrounding medium on the carrier bodies of gyrostats. The second equation in
Eqs (7.51) is the equation of the motion of the carrier bodies. That is why the right-
hand part of this equation does not depend on the velocity v. The equation of motion
of the rotors takes the form

∇ ·T+ ρ ∗L = ρ ∗
d
dt

(
Bv+ Jωωω

)
, (7.52)

where T is the moment stress tensor modeling the influence of surrounding medium
on the rotors of gyrostats.

After simple transformations the equation of energy balance is written as follows:

ρ ∗
dU
dt

= τττ T · ·dεεε
dt

+ µµµ T · ·dκκκ
dt

+TT · ·dϑϑϑ
dt

, (7.53)

where U is the internal energy density per unit mass and the strain tensors εεε , κκκ , ϑϑϑ
are introduced into consideration. These tensors are calculated by the formulas

εεε = ∇ u+E× ϕϕϕ , κκκ = ∇ ϕϕϕ , ϑϑϑ = ∇ θθθ . (7.54)

In what follows we consider the elastic material i. e. a material whose density
of internal energy and the tensors of force and moment stresses depend only on
the strain tensors and do not depend on the velocities. For the elastic material the
Cauchy–Green relations follow from the equation of energy balance (7.53):

τττ = ρ ∗
∂ U
∂ εεε

, µµµ = ρ ∗
∂ U
∂ κκκ

, T = ρ ∗
∂ U
∂ ϑϑϑ

. (7.55)

To close the system of differential equations it is necessary to express the internal
energy as a function of the strain tensors

ρ ∗U = ρ ∗U(εεε ,κκκ ,ϑϑϑ ). (7.56)

Now we consider the physically linear theory and therefore we represent the density
of internal energy in the following form:



7 On one Model of Generalized Continuum and its Thermodynamical Interpretation 163

ρ ∗U = τττ T
0 · ·εεε + µµµ T

0 · ·κκκ +TT
∗ · ·(ϑϑϑ − ϑϑϑ ∗)+

1
2

εεε · · 4C1 · ·εεε + εεε · · 4C2 · ·κκκ +

+
1
2

κκκ · · 4C3 · ·κκκ + εεε · · 4C4 · ·(ϑϑϑ − ϑϑϑ ∗)+ κκκ · · 4C5 · ·(ϑϑϑ − ϑϑϑ ∗)+

+
1
2
(ϑϑϑ − ϑϑϑ ∗) · · 4C6 · ·(ϑϑϑ − ϑϑϑ ∗).

(7.57)

Coefficients τττ 0, µµµ 0 and T∗ are called the initial stresses, ϑϑϑ ∗ is the reference value of
ϑϑϑ . Coefficients of the quadratic form 4Ci are called the stiffness tensors. In the lin-
ear theory the stiffness tensors do not depend on time. The only restriction imposed
on the stiffness tensors is concerned with the requirement of positive definiteness of
the quadratic form (7.57). The structure of the stiffness tensors and the values of the
coefficients of elasticity are determined by the physical properties of the material
medium.

After substituting expression for the density of internal energy (7.57) in the
Cauchy–Green relations (7.55) we obtain the following constitutive equations:

τττ T = τττ T
0 + 4C1 · ·εεε + 4C2 · ·κκκ + 4C4 · ·(ϑϑϑ − ϑϑϑ ∗),

µµµ T = µµµ T
0 + εεε · · 4C2 +

4C3 · ·κκκ + 4C5 · ·(ϑϑϑ − ϑϑϑ ∗),
TT = TT

∗ + εεε · · 4C4 + κκκ · · 4C5 +
4C6 · ·(ϑϑϑ − ϑϑϑ ∗). (7.58)

According to Eqs (7.58) all stress tensors can depend on all strain tensors. It means,
in particular, that the moment stress tensor of rotors can depend not only on their
relative orientation, but also on the relative orientation and relative position of the
carrier bodies.

7.4 The Simplest Theory of One-rotor Gyrostats Continuum

We consider the material continuum (see Fig. 7.3) that consists of one-rotor gy-
rostats. In limits of linear theory the motion of this continuum is described by
Eqs (7.48), (7.49), (7.51), (7.52), (7.54) and (7.58). Free space between the gyrostats
is filled up by body-points whose structure coincides with the structure of rotors be-
longing to the gyroststs. The body-points in the space between the gyrostats are the
elementary particles of a continuum which will be called the “thermal ether” in what
follows. In fact, the material continuum represented in Fig. 7.3 is a two-component
medium. We are not going to study in detail the motion of the body-points con-
tinuum (“thermal ether”) and the interaction between the gyrostats continuum and
the body-points continuum. We consider only the gyrostats continuum as an object
under study. The interaction between the carrier bodies of the gyrostats and the inter-
action between rotors of the gyrostats are characterized by tensors of the force and
moment stresses (7.58). The body-points continuum (“thermal ether”) positioned in
space between gyrostats is considered to be an external factor with respect to the
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Fig. 7.3 Elementary volume
of continuum interacting with
environment

continuum under study. That is why we will model the influence of the “thermal
ether” on the gyrostats by an external moment in the equation of the rotors motion
(7.52).

Accepting two important hypotheses we consider a special case of the linear
theory of one-rotor gyrostats continuum.
Hypothesis 1. Vector L (the mass density of external actions on the rotors of gy-
rostats) is a sum of the moment Lh characterizing external actions of all sorts and
the moment of linear viscous damping

L f =−β (Bv+ Jωωω ). (7.59)

The moment (7.59) characterizes the influence of the “thermal ether”. Structure of
the moment is chosen in accordance with the results of solving some model prob-
lems. One of these problems is considered in Sect. 7.8. Now we explain the physical
meaning of the moment of linear viscous damping (7.59). We suppose that the ro-
tors of the quasi-rigid bodies interact with body-points of the “thermal ether” and
this interaction is described by the elastic moments analogous to the moments char-
acterizing the interaction of the rotors with each other. The “thermal ether” having
infinite extent eliminates energy of the oscillating rotors. The solution of modeling
problems reveals that in the case of an infinite surrounding medium the dissipative
moment arising due to the interaction with this medium is proportional to the proper
angular momentum vector (dynamic spin).
Hypothesis 2. The moment stress tensor T characterizing the interactions between
rotors is the spherical tensor

T = T E. (7.60)

In view of assumptions (7.59) and (7.60) the equation of the rotors motion (7.52)
takes the form

∇ T − ρ ∗β (Bv+ Jωωω )+ ρ ∗Lh = ρ ∗
d
dt

(
Bv+ Jωωω

)
, (7.61)
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In view of assumption (7.60) the last term on the right-hand side of the energy
balance equation (7.53) can be reduced to the more simple form. By using notation
ϑ = tr ϑϑϑ the energy balance equation (7.53) is written as

ρ ∗
dU
dt

= τττ T · ·dεεε
dt

+ µµµ T · ·dκκκ
dt

+T
dϑ
dt

. (7.62)

Since the material medium under consideration is an elastic one, we obtain from
Eq. (7.62) the Cauchy–Green relations of which the first and the second ones coin-
cide with the first and the second relations of (7.55) respectively and the third one
has a simpler form:

τττ = ρ ∗
∂ U
∂ εεε

, µµµ = ρ ∗
∂ U
∂ κκκ

, T = ρ ∗
∂ U
∂ ϑ

. (7.63)

According to Eq. (7.62) the density of internal energy is a function of arguments
εεε , κκκ and ϑ . Let us construct the physically linear theory based on representation of
the internal energy density in the following form:

ρ ∗U = τττ 0 · ·εεε +T∗ (ϑ − ϑ ∗)+
1
2

εεε · · 4C1 · ·εεε +ϒ trεεε (ϑ − ϑ ∗)+
1
2

K(ϑ − ϑ ∗)2. (7.64)

Then the constitutive equations (7.58) take the form

τττ T = τττ T
0 + 4C1 · ·εεε + ϒ (ϑ − ϑ ∗)E, µµµ = 0, T = T∗+ ϒ trεεε +K(ϑ − ϑ ∗).

(7.65)
Thus the simplest linear theory of the material continuum consisting of one-rotor
gyrostats is described by Eqs (7.48), (7.51), (7.54), (7.61) and (7.65).

7.5 Temperature and Entropy

Let us consider the foregoing mathematical model of elastic continuum of one-rotor
gyrostats. Suppose that the model describes the behavior of a classical medium
which possesses not only elastic properties but also the viscous and thermic prop-
erties. Now we can give a thermodynamic interpretation of the variables describing
motion and interaction of the rotors and next we can carry out the identification of
the model parameters and well-known thermodynamic constants.

Let us consider the energy balance equation (7.62). Conceive that Eq. (7.62) is
the equation of energy balance for a classical moment medium (medium without
rotors). Then the last term on the right-hand side of Eq. (7.62) can be treated as
a thermodynamical one. The physical quantities T and ϑ acquire the meaning of
temperature and volume density of entropy, respectively.

It is evident, that the dimensions of the temperature and the entropy defined by
formula (7.62) are different from the dimensions of those in classical thermody-
namics of the present simple case. This problem can be solved by introduction of a
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normalization factor:

T = aTa, ϑ =
1
a

ϑ a. (7.66)

Here a is the normalization factor; Ta is the absolute temperature measured by a
thermometer; ϑ a is volume density of the absolute entropy. Let us introduce the
similar relations for the remaining variables:

θθθ =
1
a

θθθ a, ωωω =
1
a

ωωω a, Lh = aLa
h, L f = aLa

f . (7.67)

Now rewriting all equations for new variables and using new parameters

Ba =
B
a
, Ja =

J
a2 , ϒ a =

ϒ
a
, Ka =

K
a2 , (7.68)

we can eliminate the normalization factor a from these equations at least in the linear
formulation of the problem and in some particular cases of physical nonlinearity.

7.6 Linear Theory of Thermoelasticity

Classical theory of thermoelasticity is a momentless one. Therefore considering the
problem of thermoelasticity in the context of proposed model we assume only the
force interaction between carrier bodies of the gyrostats and only the force action of
external factors upon them:

µµµ = 000, m = 000. (7.69)

In the static problems from the second equation of (7.51) under the assumption
(7.69) it follows that τττ × = 000. In the dynamic problems the stress tensor can be
nonsymmetric in spite of assumption (7.69). In this case it is necessary to take into
account the dependence of the strain tensor εεε on the angle of rotation of carrier
bodies ϕϕϕ . Thus, assumption (7.69) does not imply the transition to the momentless
theory of elasticity for carrier bodies. In addition let us assume that I(0)∗ = 0. In this
case tensor τττ will be symmetrically both in the static and dynamic problems and all
equations concerned with rotational motions of the carrier bodies of gyrostats can
be excluded.

Applying the linear theory it is admissible in certain range of temperatures and
entropy densities to change some reference values T ∗a and ϑ ∗a . Let us introduce de-
viations of the temperature and the density of entropy from their reference values:

Ta = T ∗a + T̃a, ϑ a = ϑ ∗a + ˜ϑ a. (7.70)

Resume of the basic equations of linear theory of the elastic medium consisting
of the one-rotor gyrostats includes the dynamic equations (7.51), (7.61) which under
notations (7.66) – (7.70) take the form
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∇ · τττ + ρ ∗f = ρ ∗
d
dt

(
v+Baωωω a

)
,

∇ T̃a− ρ ∗β (Bav+ Jaωωω a)+ ρ ∗La
h = ρ ∗

d
dt

(
Bav+ Jaωωω a

)
,

(7.71)

the mass balance equation (7.49), the kinematical and geometrical relations (7.48)
and (7.54) which under notations (7.66) and (7.67) and condition of symmetry of
the stress tensor are reduced to

ρ = ρ ∗ (1− ε ), v =
du
dt

, ωωω a =
dθθθ a

dt
,

εεε =
1
2

(
∇ u+ ∇ uT ) , ε = trεεε , ϑ a = trϑϑϑ a = ∇ · θθθ a,

(7.72)

and the constitutive equations (7.65) which under notations (7.66) – (7.70) and the
condition of symmetry of the stress tensor are written as

τττ =
(

Kad− 2
3

G
)

ε E+G εεε + ϒ a ˜ϑ a E, T̃a = ϒ a ε +Ka ˜ϑ a, (7.73)

where Kad is the adiabatic modulus of compression (the adiabatic bulk modulus), G
is the shear modulus.

Let us suppose that Ba = 0 and other parameters take the values

β Ja =
T ∗a

ρ ∗λ
, Ka =

T ∗a
ρ ∗cv

, ϒ a =− α KisT ∗a
ρ ∗cv

, (7.74)

where cv is the specific heat at constant volume, λ is the heat-conduction coefficient,
Kis is the isothermal modulus of compression (the isothermal bulk modulus), α is
the volume coefficient of thermal expansion,

Kad = Kis
cp

cv
, cp− cv =

α 2KisT ∗a
ρ ∗

⇒ Kad = Kis +
α 2K2

isT
∗

a

ρ ∗cv
, (7.75)

where cp is the specific heat at constant pressure. In this case we can transform the
system of equation (7.71) – (7.73) to the following form:

∇ · τττ + ρ ∗f = ρ ∗
d2u
dt2 , τττ =

(
Kis− 2

3
G
)

ε E+ 2Gεεε − α KisT̃a E,

∆ T̃a− ρ ∗cv

λ

(
dT̃a

dt
+

1
β

d2T̃a

dt2

)
=

α KisT ∗a
λ

(
dε
dt

+
1
β

d2ε
dt2

)
− ρ ∗ ∇ ·La

h,

(7.76)

Thus, the mathematical description of the proposed mechanical model includes as
a special case the formulation of the coupled problem of thermoelasticity with the
hyperbolic type heat conduction equation.
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7.7 Model of Internal Damping

There exist different macroscopic and microscopic models of internal damping.
At present, however, viscoelasticity is not a well-developed science for the treat-
ment of thermodynamical and dissipative phenomena. The point of view that inter-
nal damping is concerned with thermal effects is widespread. The distribution of
phonons is in a local thermodynamical equilibrium, i. e. the temperature changes
adiabatically, when acoustic wave propagates. Consequently, regions separated by
the half-wavelength distance from one another have different temperatures and the
irreversible heat flow between these regions arises as a result of the heat conduction
phenomena. This process causes transfer of the energy of mechanical vibrations into
heat energy. Now we do not call in question the idea about interplay of the internal
damping and thermal effects. We emphasize that the analysis of the experimental
values of the volume (acoustic) viscosity of various substances shows that the vol-
ume viscosity is an independent substance characteristic which is not related to the
heat-conduction coefficient and other thermodynamical parameters. This means that
we should not consider the nature of the acoustic viscosity to be directly connected
with heat conduction mechanisms. Let us emphasize that by discussing the internal
damping we mean only the volume (acoustic) viscosity. In our opinion the shear
viscosity has an absolutely different nature and it is not discussed here.

Let us consider the energy dissipation caused by heat conduction phenomena.
It is well-known that this energy dissipation takes place only in the case when the
process is not isothermal and not adiabatic. Now let us consider the energy dissipa-
tion caused by the viscosity. This energy dissipation always takes place processes
included adiabatic processes. Proceeding from this fact we assume that dissipation
is caused only by viscosity and the process is adiabatically, i.e. the volume density
of entropy is constant:

ϑ a = ϑ ∗a = const ⇒ ˜ϑ a = 0 ⇒ T̃a = ϒ a ε . (7.77)

By comparison of the equations describing the dynamics of one-rotor gyrostat
continuum with the classical equations of thermoelasticity we assumed that Ba = 0.
Now we reject this restriction. We suppose that the terms containing parameter Ba

are concerned with the internal damping mechanism. In order to argue in favor of
this hypothesis we consider the heat conduction equation

∆ T̃a− ρ ∗β Ja

Ka

dT̃a

dt
− ρ ∗Ja

Ka

d2T̃a

dt2

= β ρ ∗
(

Ba− ϒ aJa

Ka

)
dε
dt

+ ρ ∗
(

Ba− ϒ aJa

Ka

)
d2ε
dt2 − ρ ∗ ∇ ·La

h.

(7.78)

Let us transform this equation by using the adiabatic condition (7.77). As a result
we obtain

ϒ a ∆ ε − ρ ∗β Ba
dε
dt
− ρ ∗Ba

d2ε
dt2 =−ρ ∗ ∇ ·La

h. (7.79)
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It is easy to see that Eq. (7.79) contains a dissipative term. This dissipative term is
in no way concerned with the heat conduction phenomena.

In order to clarify the physical meaning of the coefficients in Eq. (7.79) we stop
the discussion of the proposed model and consider the motion of a viscous fluid in
which the pressure obeys the Stokes law. The liquid state (in the case of no external
mass forces) is described by the following equations:

∇ p = ρ ∗
dv
dt

, p = η v
dε
dt

, (7.80)

where η v is the volume (acoustic) viscosity. From Eqs. (7.80) we obtain the relation
between the flow of matter ρ ∗v and the volume strain gradient

η v ∇ ε = ρ ∗v. (7.81)

By taking the divergence of both sides of Eqs. (7.81) we obtain the self-diffusion
equation which can be generalized by adding the source term ρ ∗Ψ to it:

η v∆ ε − ρ ∗
dε
dt

=−ρ ∗Ψ . (7.82)

Comparing Eq. (7.79) with the self-diffusion equation (7.82) we find these two equa-
tions to be equivalent with the only difference that the former contains the inertial
term if

ϒ a

β Ba
= η v,

1
β Ba

∇ ·La
h = Ψ . (7.83)

From the first equation of (7.83) by using the third equation of (7.74) we get

β Ba =− α KisT ∗a
ρ ∗cvη v

. (7.84)

As evident from Eq. (7.84), parameter Ba is negative for finite values of the volume
viscosity η v and is equal to zero when η v→ ∞ .

In order to clarify the physical meaning of the obtained result we now consider
the dissipative term in equation (7.71) for the rotor dynamics

ρ ∗La
f =−β ρ ∗(Bav+ Jaωωω a). (7.85)

Upon substituting expressions for parameters (7.74), (7.84) into Eq. (7.85) we get

ρ ∗La
f =

α KisT ∗a
cvη v

v− T ∗a
λ

ωωω a. (7.86)

Let us calculate the power of the dissipative moment (7.86):

ρ ∗La
f · ωωω a =

α KisT ∗a
cvη v

v · ωωω a− T ∗a
λ

ωωω a · ωωω a. (7.87)
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The second term in expression (7.87) is a dissipative one. When the heat-conduction
coefficient decreases the dissipation increases. The first term in expression (7.87)
determines the process which under the certain conditions can become inverse to
the dissipative one. In particular, in the isothermal case the inequality v · ωωω a > 0
is valid and, therefore, the first term in expression (7.87) determines the process
of energy supply from the thermal ether. When the volume viscosity decreases the
energy supply in the body from the thermal ether increases.

Let us transform Eq. (7.87) by separating the total squares in it:

ρ ∗La
f · ωωω a =

λ α 2K2
isT
∗

a

4η 2
v c2

v
v ·v− T ∗a

λ

(
ωωω a− λ α Kis

2η vcv
v
)2

. (7.88)

It is easy to see that the second term in expression (7.88) determines the dissipative
process and the first term characterizes the process of the energy supply from the
thermal ether. The first term is inversely as the square of the viscosity. Therefore,
when the volume viscosity decreases the supply of energy of the thermal ether into
the body increases. The second term defining the dissipative process also depends
on the volume viscosity. As a result the energy interchange between the body and the
thermal ether depends on the volume viscosity in a complicated manner. Thus the
volume viscosity characterizes the natural ability of a substance to absorb the energy
of the thermal ether. Will this ability be realized? It depends on other properties of
the substance and external circumstances. The volume viscosity of gases is very
small and therefore gases possess a good ability to absorb the energy of the thermal
ether. Therefore the gas particles are in a state of intense mgotion in spite of the
energy dissipation caused by the heat conduction phenomena. The volume viscosity
of fluids (even inviscid fluid) is much larger than the volume viscosity of gases.
The volume viscosity of solids is as large as that it can be considered to approach
infinity. In this case parameter Ba is negligible. Thus the problem of thermoelasticity
is admissible for solids while for fluids and gases it is important to take into account
the terms dependint on the volume viscosity.

7.8 Interaction of Body-point and “Thermal Ether”

In what follows we consider a model problem which solution allows us to substan-
tiate the choice of the low of viscous damping (7.59).

Fig. 7.4 Interaction of the body-point with the semi-infinite continuum
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Let us consider a semi-infinite inertial rod (see Fig. 7.4), consisting of the body-
points which are similar to the rotors of the one-rotor gyrostats. The rod is connected
with the analogous body-point by means of an inertialess spring working in torsion
(rotation about the axis of the rod). The inertia of the rod is characterized by the
moments of inertia B̂, Ĵ and the linear density σ ρ̃ , where σ is “the area of rod
section” and ρ̃ is the volume density of mass. The elastic properties of the rod are
characterized by the torsional stiffness σ k̃, where the coefficient σ is introduced in
order that stiffness k̃ possesses the dimension in 3D problems. The inertia of the
body-point is characterized by the mass m and the moments of inertia B, J. The
torsional stiffness of the spring connecting the body-point with the rod is equal
to σ k∗/r0, where r0 is “the length” of the spring. The coefficients σ and r0 are
introduced in order that stiffness k∗ possesses the dimension like k̃. The motion
of the system is described by the following quantities: u(s, t) is the longitudinal
displacement of the rod, θ (s, t) is the rotation angle of the rod particles, y(t) is
the displacement of the body-point along the axis of the rod, ψ (t) is the angle of
rotation of the body-point about the axis of the rod. We suppose that the particles
of the rod interact only by the moment. The force interaction of the rod particles is
assumed to be zero. At the initial instant of time the displacements and the rotation
angles as well as the translational and angular velocities are equal to zero. The body-
point possesses a non-zero initial angular velocity directed along the axis of the rod
and a non-zero initial angle of rotation about the axis of the rod. It is evident that
under such an initial condition the system will be in motion which are longitudinal–
torsional oscillations.

The longitudinal–torsional oscillations of the rod are described by the linear
equations:

∂ T
∂ s

= σ ρ̃
(
B̂ü+ Ĵθ̈

)
, T = σ k̃

∂ θ
∂ s

, σ ρ̃
(
ü+ B̂θ̈

)
= 0, (7.89)

where s is the space coordinate (0≤ s < +∞ ). After simple transformation the sys-
tem (7.89) can be reduced to the wave equation in of the unknown θ :

∂ 2θ
∂ s2 −

1
c2 θ̈ = 0, c2 =

k̃

ρ̃ (Ĵ−B̂2)
. (7.90)

The boundary conditions for the rod take the form:

σ k̃
∂ θ
∂ s

∣∣∣∣
s=0

=− σ k∗
r0

(
ψ − θ |s=0

)
. (7.91)

Now we formulate the equations of the body-point motion:

m
(
Bÿ+ J ¨ψ

)
=− σ k∗

r0

(
ψ − θ |s=0

)
, m

(
ÿ+B ¨ψ

)
= F. (7.92)

Here F is an external force. The initial conditions for the body-point have the form:
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y(0) = y0, ψ (0) = ψ 0, ẏ(0) = v0, ˙ψ (0) = ω 0. (7.93)

Let us represent the solution of the Eq. (7.90) in the form given by d’Alembert
and Euler:

θ (s, t) = f (s− ct)+g(s+ ct). (7.94)

Since the waves propagate to the right and there are no perturbations at infinity, we
can assert that g(s+ct) = 0. In view of zero initial conditions for the rod we see that
the function f (s− ct) is not equal to zero only on the negative semiaxis. Hence

θ (s, t) =

{
0, s > ct,

f (s− ct), s < ct.
(7.95)

Let us denote:
θ ∗(t) = θ (s, t)

∣∣
s=0 = f (s− ct)

∣∣
s=0. (7.96)

Then
θ̇ ∗(t) =−c f ′(s− ct)

∣∣
s=0, (7.97)

where the derivation with respect to argument (s− ct) is denoted by the stroke.
Hence

∂ θ
∂ s

∣∣∣∣
s=0

= f ′(s− ct)
∣∣
s=0 =−

1
c

θ̇ ∗(t). (7.98)

Subject to (7.96), (7.98) the boundary condition for the rod (7.91) takes the form

σ k̃
c

θ̇ ∗ =
σ k∗
r0

(
ψ − θ ∗

)
, (7.99)

and the equations of the body-point motion (7.92) can be rewritten as follows

m(Bÿ+ J ¨ψ )+
σ k∗
r0

(
ψ − θ ∗

)
= 0, m(ÿ+B ¨ψ ) = F. (7.100)

Let us express the difference (ψ − θ ∗) from Eq. (7.99) and put it in the first equation
of (7.100). We obtain:

Bÿ+ J ¨ψ +
σ k̃
mc

θ̇ ∗ = 0. (7.101)

Now we integrate Eq. (7.101) taking into account the initial conditions. As a result
we obtain:

Bẏ+ J ˙ψ +
σ k̃
mc

θ ∗ = Bv0 + Jω 0. (7.102)

Let us express θ ∗ from Eq. (7.102) and substitute it in Eqs (7.100). We obtain the
following system of equations:

m(Bÿ+ J ¨ψ )+mβ (Bẏ+ J ˙ψ )+
σ k∗
r0

ψ = mβ (Bv0 + Jω 0), m(ÿ+B ¨ψ ) = F,

(7.103)
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where coefficient β is calculated by the formula:

β =
ck∗
r0k̃

=
k∗/r0√

k̃ρ̃ (Ĵ−B̂2)
. (7.104)

According to Eqs (7.103), the moment of viscous damping characterizing the
radiation of energy in the surrounding medium is proportional to the angular mo-
mentum of the body-point, i. e. it depends on both the angular velocity and the
translational velocity. If B = 0 then the dependence on the translational velocity
vanishes. In this case the problem under consideration becomes similar to the prob-
lem of the motion of an ordinary oscillator on the elastic waveguide. Analysis of
formula (7.104) for the coefficient of damping β allows us to conclude that increas-
ing the torsional stiffness of the spring connecting the body-point and the rod causes
increasing of the radiation in the surrounding medium.

7.9 Conclusion

A model of a two-component continuum is suggested which takes into account ther-
momechanical processes. The mathematical description of this model is developed
in the framework of physically and geometrically linear theory. In future we intend
to carry out further development of the theory in two directions. The first one is con-
cerned with consideration of nonlinear effects in the context of the same mechani-
cal model. This is necessary for describing the behavior of substances in the states
near the phase changes and heat-conduction processes under the circumstances of
quickly varying and superhigh temperatures. The second direction deals with a mod-
ification of the mechanical model by taking into account the additional degrees of
freedom for introducing the chemical potential and a number of additional physi-
cal characteristics of the medium. This is necessary to describe the phase changes
and chemical reactions and also to take into account the interaction of the substance
with the electromagnetic field and to describe thermoelectric and thermomagnetic
effects.
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