
Chapter 12
High-Frequency Free Vibrations of Plates
in the Reissner’s Type Theory

Elena A. Ivanova

Abstract The classic plate theory by Kirchhoff allows to accurately describe the
processes slowly varying by time. To solve the problems of the plate vibrations
in the case of the external loads quickly varying by time the Reissner’s type plate
theory should be used. The Reissner’s type plate theory includes three eigenfre-
quency spectra: one low-frequency spectrum whose asymptotic order is O(h), and
two high-frequency spectra whose asymptotic order is O(h−1). Solving the prob-
lems of plate vibrations under the action of the quickly varying by time loads it
is necessary to take into account vibrations with eigenfrequencies from the high-
frequency spectra. That is why the problem of plate free vibrations with eigenfre-
quencies whose asymptotic order is O(h−1) is interesting and practically important.
In this paper asymptotic analysis of the equations of the Reissner’s type plate the-
ory for high-frequency free vibrations is carried out and the approximate equations
of plate vibrations with eigenfrequencies of the asymptotic order O(h−1) are pro-
posed. Asymptotic analysis of the equations of plate free vibrations shows that be-
havior of the functions defining the stress-strain state of the plate for high-frequency
free vibrations differs from it for low-frequency free vibrations. For high-frequency
free vibrations the solution includes the functions which quickly vary along the
space coordinates but which are not the boundary layer type functions. Because of
that using of the exact equations of the Reissner’s type theory in numerical proce-
dures is difficult. Approximate equations of high-frequency free vibrations of plates
independent of quickly varying along the space coordinates functions are formu-
lated in this paper. These equations describe vibrations with eigenfrequencies from
the high-frequency spectra only, like the classic plate theory describes vibrations
with eigenfrequencies from the low-frequency spectrum only.

Keywords Reissner plate · High-frequency vibration

E. A. Ivanova (B)
Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, Bolshoy
pr. V.O., 61, 199178, Saint Petersburg, Russia
e-mail: elenaivanova239@post.ru

H. Altenbach and V.A. Eremeyev (eds.), Shell-like Structures, 153
Advanced Structured Materials 15, DOI: 10.1007/978-3-642-21855-2 12,
© Springer-Verlag Berlin Heidelberg 2011



154 E.A. Ivanova

12.1 Introduction

It is known that the transverse shear deformations [1–4] and the inertia of rota-
tion [5,6] must be taken into account in some problems of forced vibrations of plates,
in particular, for the plate vibrations under impact and other rapidly time-varying
loads, for the thick plates and for the composite laminates. [7–10]. Therefore, the
solution of the problem of eigenfrequencies and modes of plate vibrations for the
Reissner theory [11, 12] is of great importance. The problem of law-frequency free
vibrations of the Reissner plate is studied in detail. It is well known that the solu-
tion of the problem includes the slowly varying functions of the space coordinates
and the rapidly varying functions of boundary-layer type [13]. In contrast to law-
frequency free vibrations, the problem of high-frequency free vibrations of plate
has been studied insufficiently. As far as we know, the problem was studied only
in the paper [14] where the equations of free plate vibrations are obtained on the
basis of three-dimensional elasticity by a variational-asymptotic method for various
frequency spectra.

In contrast to [14], we obtain the approximate equations of high-frequency
free plate vibrations starting from the asymptotic analysis of the equations of the
Reissner plate theory. We show that the functions that describe the stress-strain
state of the plate for the law-frequency and high-frequency vibrations, have quite
a different character of varying with respect to the space coordinates. For high-
frequency free vibrations the solutions include rapidly varying functions as well
as for low-frequency ones, but for the high-frequency case these functions are not
the boundary-layer type functions. They deeply penetrate into the plate domain.
In contrast to [14], our attempt revises the problem of high-frequency vibrations
so as to make it more convenient for numerical implementation and to cover all
possible types of boundary conditions. We also note that the given equations for
high-frequency vibrations differ from the equations in [14].

12.2 Summary of the Basic Equations of Free Vibrations of
Reissner’s Plate

Let us consider the problem of vibrations of a plate with taking account of the inertia
of rotation, and of the transverse shear deformation. The deflection w, the vector Ψ
of rotation angles, the vector N of shear forces, and the moment tensor M are related
to the displacements and stresses in three-dimensional elasticity as follows [15,16]:

hw =
∫ h/2

−h/2
u · ndz , h3Ψ =

∫ h/2

−h/2
uzdz

N =
∫ h/2

−h/2
a ·τ · ndz , M =

∫ h/2

−h/2
a ·τ · azdz , a = E−nn.

(12.1)
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Here u and τ are are the displacement vector and the stress tensor in the three-
dimensional theory, h is the plate thickness, n is the vector of the unit normal to the
plate plane, E is the unit tensor.

The theory of plate with taking account of the inertia of rotation, and of the
transverse shear deformation includes the following equations.

The equations of the motion are

∇ ·N+ρhP = ρhẅ , ∇ ·M−N =
1

12
ρh3Ψ̈, (12.2)

where P(x, y, t) is the external load, ρ is the mass density.
Constitutive equations take the form

N =GhΓγ, M = D
[
(1−μ)æ+μ træa

]
. (12.3)

Here γ is the transverse shear deformation vector, æ is the bending–twisting tensor,
D= Eh3/[12(1−μ2)] is the bending stiffness, E is the Young modulus, μ is Poisson’s
ratio, GhΓ is the shear stiffness, Γ is the coefficient of transverse shear, G = E/[2(1+
μ)] is the shear modulus.

Geometric relations are

γ = ∇w+Ψ , æ =
1
2

(
∇Ψ+∇ΨT

)
. (12.4)

The kinematic boundary conditions acquire the form

w|c = w∗, ν ·Ψ|c = Ψ ∗
ν , τ ·Ψ|c = Ψ∗

τ . (12.5)

The force boundary conditions can be written as follows

ν ·N|c = N∗
ν , ν ·M · ν|c = M∗

ν , ν ·M · τ|c = M∗
τ . (12.6)

Here ν and τ the unit outward normal vector and the unit tangent vector to the plate
contour, respectively; the vectors ν, τ, and n, are assumed to form a right-handed
system; Ψ∗

ν and Ψ∗
τ are angles of rotation about the tangent vector and the nor-

mal vector to the plate contour, respectively; N∗
ν is the lateral force, M∗

ν is bending
moment, M∗

τ is the torque.
Introducing potentialsΦ and F we reduce the equations of the plate theory to the

more convenient form [17]:

DΔΔΦ+ρhΦ̈− ρh3

12

(
1+

2
Γ(1−μ)

)
ΔΦ̈+

ρ2h3

12GΓ
Φ
....
+ρh P = 0, (12.7)

ΔF − 12Γ

h2
F − ρ

G
F̈ = 0. (12.8)

The quantities characterizing the stress-strain state of a plate are expressed in terms
of the potentials Φ and F by the formulas
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w = −Φ+ h2

6Γ(1−μ)
ΔΦ− ρh2

12GΓ
Φ̈ , Ψ = ∇Φ+∇F ×n,

N = D∇ΔΦ− ρh3

12
∇Φ̈+GhΓ∇F ×n,

M = D
[
(1 −μ)∇∇Φ+μΔΦa+

1−μ
2

(∇∇F ×n−n×∇∇F
)]
.

(12.9)

It is known [18] that in the Reissner’s type theory of plates there are three spectra
of eigenfrequencies, which satisfy the following asymptotic estimates:

ω(1)
i = hω(1)

1i +h2ω(1)
2i + ...

ω(2)
i =

√
12GΓ

ρh2
+ω(2)

0i + ... ω(3)
i =

√
12GΓ

ρh2
+ω(3)

0i + ...
(12.10)

where the first spectrum in Eqs (12.10) describes the low frequency bending vi-
brations, whereas the second and the third spectra in (12.10) characterize the high
frequency shear and bending vibrations.

12.3 Asymptotic Analysis of the Equations of Reissner’s Plate
Theory

For the free high-frequency vibrations, the functions Φ and F substantially differ
from those for the low-frequency vibrations or static bending. The function F varies
slowly with respect to the spatial coordinates and is not of boundary-layer type.
This is due to the fact that the leading terms in the first and in the second compo-
nents in Eq. (12.8) cancel each other. For the approximate statement of the problem,
Eq. (12.8) remains the same. A very important feature of the high-frequency vibra-
tions is that the asymptotic orders of the functions F and Φ are the same: F ∼ Φ .
The penetrating potential Φ for the high-frequency vibrations has quite a different
structure than in the low-frequency case; namely, along with functions, slowly vary-
ing with respect to the spatial coordinates, it includes a rapidly varying function,
which was lacking in the preceding cases. Let us denote this rapidly varying func-
tion by ϕ, and retain the notationΦ for the slowly varying component as well as for
the penetrating potential itself. This seems convenient, since there is an asymptotic
relation ϕ ∼ h2Φ . The function ϕ seemingly need not be taken into account since it
is relatively small. However, this is not the case, and the function ϕ may exert in-
fluence on the leading terms of some characteristics of the stress-strain state, which
can depend not only on the penetrating potential, but also on its derivatives of order
≤ 3. Let us proceed from Eq. (12.7) to the approximate equations for the compo-
nents Φ and ϕ. We suppose that for the functionsΦ, and ϕ the following asymptotic
estimates hold
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F̈ =
[
−12GΓ

ρh2
+O(1)

]
F , Φ̈ =

[
−12GΓ

ρh2
+O(1)

]
Φ, ϕ̈ =

[
−12GΓ

ρh2
+O(1)

]
ϕ,

∂F
∂x

∼ ∂F
∂y

∼ F ,
∂Φ

∂x
∼ ∂Φ

∂y
∼Φ,

∂ϕ

∂x
∼ ∂ϕ

∂y
∼ 1

h
ϕ, ϕ ∼ h2Φ ∼ h2F.

12.4 Approximate Formulation of the Problem of
High-Frequency Free Vibrations

On substituting the expression for the penetrating potential Φ+ϕ into Eq. (12.7)
and by retaining only the leading terms, we obtain

Gh A(Φ)+D B(ϕ)= 0,

A(Φ) =
(
Γ+

2
1−μ

)
ΔΦ− 12Γ

h2
Φ− ρ

G
Φ̈,

B(ϕ) = Δ

[
Δϕ+

12

h2

(
1+

Γ(1−μ)
2

)
ϕ

]
.

(12.11)

Note that the first equation in (12.11) contains an obvious contradiction. On the
one hand, A(Φ) is a slowly varying function, since it depends on Φ, and B(ϕ) is a
rapidly varying function, since it depends on ϕ. On the other hand, according to the
first equation in (12.11), the functions A(Φ) and B(ϕ) are proportional. Thus, A(Φ)
and B(ϕ) are slowly varying and rapidly varying simultaneously, that is, they are
both zero. Hence, the first equation in (12.11) represents the two equations

A(Φ) = 0, B(ϕ) = 0. (12.12)

The first equation in (12.12) has the form(
Γ+

2
1−μ

)
ΔΦ− 12Γ

h2
Φ− ρ

G
Φ̈ = 0. (12.13)

Equation (12.13) permits us to find the leading term of the slowly varying part of
the penetrating potential. It should be noted that Eq. (12.13) for Φ coincides with
Eq. (12.8) for F to within a constant coefficient of the first summand, and the be-
havior of Φ is similar to that of F in the case of high-frequency vibrations.

The second equation in (12.12) is

Δz(ϕ) = 0, z(ϕ) = Δϕ+
12

h2

(
1+

Γ(1 −μ)
2

)
ϕ. (12.14)

The solution of the equation Δz = 0 is a slowly varying function. Since z(ϕ) varies
rapidly, all solution except for zero are excluded: z ≡ 0 . Then the equation for ϕ
acquires the form
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Δϕ+
12

h2

(
1+

Γ(1 −μ)
2

)
ϕ = 0. (12.15)

Equation (12.15) allows one to find the leading term of the rapidly varying part of
the penetrating potential. Note that in contrast to the low-frequency vibrations, the
rapidly varying function for the high-frequency vibrations is not of boundary-layer
type, but penetrates into the entire plate domain.

For the high-frequency vibrations, the characteristics of stress-strain state of the
plate have the following asymptotic representations:

w = − h2

12
ΔΦ−

(
1+

2
Γ(1 −μ)

)
ϕ,

Ψ = ∇Φ+∇F ×n , N =GhΓ
(∇Φ+∇F ×n

)
,

M = D
[
(1−μ)∇∇(Φ+ϕ)+μΔ(Φ+ϕ)a+

1−μ
2

(∇∇F ×n−n×∇∇F
)]
.

(12.16)

Before proceeding to the statement of the boundary conditions, let us focus our
attention on the following important property of ϕ. Consider a boundary condi-
tion depending on ϕ, for example, w|c = 0. Obviously, ϕ cannot vary rapidly on
the boundary, since the other components in the boundary condition vary slowly.
A similar conclusion holds for any boundary condition that depends on ϕ. In addi-
tion, ϕ is generally nonzero on the plate contour, since otherwise it would obviously
be zero in the entire plate domain. The most natural conclusion follows: on the
plate boundary, the function ϕ loses the property of being rapidly varying and be-
comes a slowly varying function along the contour. We point out that ϕ varies slowly
only on the plate boundary; it rapidly varies in every direction in the interior of the
domain arbitrarily close to the boundary. Thus, the tangent derivative of ϕ on the
plate contour has the same asymptotic order as ϕ: ∂ϕ/∂τ|c ∼ ϕ.

The kinematic boundary conditions acquire the form[
− h2

12
ΔΦ−

(
1+

2
Γ(1 −μ)

)
ϕ

]∣∣∣∣∣∣
c

= 0,

(
∂Φ

∂ν
+
∂F
∂τ

)∣∣∣∣∣∣
c

= 0,

(
∂Φ

∂τ
− ∂F
∂ν

)∣∣∣∣∣∣
c

= 0.

(12.17)
The force boundary conditions are written as follows:

GhΓ

(
∂Φ

∂ν
+
∂F
∂τ

)∣∣∣∣∣∣
c

= 0,[
D(1−μ)

[ ∂2F
∂ν∂τ

−
( 1
R
∂Φ

∂ν
+
∂2Φ

∂τ2

)]
+D

[
ΔΦ− 12

h2

(
1+

Γ(1−μ)
2

)
ϕ
]]∣∣∣∣∣∣

c

= 0,[
D(1−μ)

[ ∂2Φ

∂ν∂τ
+

( 1
R
∂F
∂ν
+
∂2F

∂τ2

)]
−
(ρh3

12
F̈ +GhΓF

)]∣∣∣∣∣∣
c

= 0.

(12.18)

The physical meaning of the boundary conditions (12.17) and (12.18) is the same
as that of conditions (12.5) and (12.6), respectively. Equations (12.8), (12.13), and
(12.15) supplemented with the boundary conditions (12.17) and (12.18) form an



12 High-Frequency Free Vibrations of Plates in the Reissner’s Type Theory 159

approximate statement of the problem of free high-frequency vibrations, which per-
mits us to find the leading terms of the characteristics of the stress-strain state and
the eigenfrequencies with a relative error O(h4). Recall that the main terms of the
eigenfrequencies are equivalent to

√
12GΓ/(ρh2) .

12.5 Formulation of the Problem of High-Frequency Free
Vibrations of the Reissner’s Plate without Taking Account
of Rapidly Varying Function

As was noted in the preceding, ϕ is a rapidly varying function and penetrates into
the entire plate domain. Hence, the cited statement for the high-frequency vibra-
tions is practically invalid in numerical implementations. Is it possible to revise this
problem without taking account of ϕ? Before answering this question, let us note
the following: the vector Ψ of rotation angles and the vector N of shearing forces,
which do not depend on ϕ (see Eqs (12.16)), are two orders of magnitude larger than
the deflection w and the moment tensor M respectively. Thus allows one to claim,
that the stress-strain state is mainly characterized by the vector of rotation angles
and the vector of shear forces, whereas the deflection and the moment tensor play a
less important role. Therefore, the statement of this problem without the function ϕ
is consistent in principle.

Thus, let us eliminate Eq. (12.15) from the system of equations for the high-
frequency vibrations. Then the order of the system with respect to the spatia] deriva-
tives is reduced from six to four. Hence, the three boundary conditions in the original
statement must be replaced by two boundary conditions independent of ϕ. One of
the original three boundary conditions is the third condition in (12.17) or in (12.18).
Since these conditions do not depend on ϕ, they are retained. Two other conditions
are replaced by one condition according to the following rule:

• the second condition in (12.17) and the first condition in (12.18) are equivalent,
and if they are given simultaneously, there is no need to choose one of them (note
that the function ϕ is identically zero for these boundary conditions);

• if the first and the second conditions in (12.17) are given, the second condition
must be retained, since it is independent of ϕ (whereas the first condition depends
on ϕ);

• if the first and the second conditions in (12.18) are given, the first condition must
be retained, since it is independent of ϕ (whereas the second condition depends
on ϕ);

• since the first condition in (12.17) and the second condition in (12.13) depend on
ϕ they can be replaced by the combination

[
D(1 −μ)

[ ∂2F
∂ν∂τ

−
( 1
R
∂Φ

∂ν
+
∂2Φ

∂τ2

)]
+

(ρh3

12
Φ̈+GhΓΦ

)]∣∣∣∣∣∣
c

= 0. (12.19)
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The physical meaning of the boundary conditions without the function ϕ is the
following. The third condition in (12.17) means that the angle Ψτ of rotation about
the normal to the plate contour is zero. The second condition in (12.17) (and the
equivalent first condition in (12.18)) indicates that the angle Ψν of rotation about
the tangent to the plate contour is zero. The third condition in (12.18) means that
the torque Mτ is zero. Condition (12.19) indicates that the reduced bending moment
Mν −GhΓw is zero.

12.6 Asymptotic and Numerical Analysis of High-Frequency
Free Vibrations of Rectangular Plates

Free vibrations of rectangular plates with frequencies belonging to high-frequency
spectra are studied. The results predicted by the exact Reissner’s type theory are
compared with those predicted by an approximate theory of high-frequency free
vibrations which takes into account only functions slowly varying with respect to
the spatial coordinates. It is well known that in solving some dynamical problems
of plates, in particular, problems on forced vibrations under the action of impact
loadings, one cannot ignore high-frequency vibrations which are associated with
the inertia of rotation and the transverse shear deformation. As pointed out above,
for high-frequency vibrations, the solution contains functions rapidly varying with
respect to spatial coordinates and penetrating into the entire domain of the plate.
The presence of such functions makes the exact equations of the Reissner theory
practically unsuitable for the numerical analysis of the problems. Above an approx-
imate statement of the problem on high-frequency free vibrations of a plate was
suggested; only functions that vary slowly with respect to the spatial coordinates
are taken into account. The asymptotic accuracy of this statement is O(h) compared
with unity in determining eigenfrequencies and O(h4) in determining eigenfrequen-
cies. This difference in the accuracy is accounted for by the fact that the leading
terms of asymptotic expansions for all eigenfrequencies coincide and are known,
whereas the approximate theory defines the first correcting term in the asymptotic
expansions for the eigenfrequencies.

Of course, the asymptotic accuracy of a theory is an important characteristic.
However, to assess an asymptotic theory from the viewpoint of its practical signifi-
cance, the actual accuracy of the theory is of importance rather than its asymptotic
accuracy. (By the actual accuracy we mean the relative difference of the value of a
quantity predicted by the approximate theory and the value of that quantity predicted
by the exact theory for the given value of the small parameter.) In what follows we
deal with the analysis of the actual accuracy of the approximate theory of high-
frequency vibrations which was suggested above. The purpose on this research is to
determine the area of applicability of the theory.

The investigation is exemplified by problems having exact analytical solution,
which allows us to rule out practically any errors of calculations. Now we consider
rectangular plates two opposite sides of which are hinged. Let us consider a plate
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occupying a domain −a ≤ x ≤ a,−b ≤ y ≤ b. The constrained hinged support condi-
tions are assumed to be satisfied at the sides y = ±b:

w|c = 0, Mν |c = 0, Ψτ|c = 0. (12.20)

The boundary conditions at the sides x =±a can be arbitrary. We study vibrations
symmetric with respect to the axes x = 0 and y = 0. The eigenforms satisfying the
differential equations (12.7) and (12.8) and the boundary conditions (12.20) at y =
±b have the form

Φn(x, y) = [C1n cos(λ1nx)+C2n cos(λ2nx)]cos(μny),

Fn(x, y) = C3n sin (δnx) sin (μny),

μn = (2n−1)π/(2b), λ1n =
√

An − Bn, λ2n =
√

An + Bn ,

δn =
√
ρω2

n/G −12Γ/h2 −μ2
n, An = [1+Γ(1 −μ)/2]ρω2

n/(2GΓ)−μ2
n ,

Bn =
√
ρh/D+ ([1−Γ(1−μ)/2]ρω2

n/(2GΓ))2.

(12.21)

By satisfying the boundary conditions at x= ±a one reduces the problem to solv-
ing a system of homogeneous algebraic equations for the coefficients C1n,C2n,C3n.
By equating the determinant of this system to zero, one obtains an equation for
determining eigenfrequencies. We considered all types of boundary conditions pos-
sible in the Reissner’s type theory and obtained the frequency equations for each of
them.

Let us discuss the solution of the problem according to the approximate theory of
high-frequency free vibrations. It can be readily shown that the eigenforms satisfy-
ing the differential equations (12.8) and (12.13) and the constrained hinged support
conditions (12.20) at y = ±b have the form

Φn(x, y) =C1n cos(λ1nx)cos(μny), Fn(x, y) =C3n sin (δnx) sin (μny),

λ1n =

√
ρ

G
ω0n

Γ+2/(1−μ)
−μ2

n, δn =

√
ρ

G
ω0n −μ2

n, ω0n = ω
2
n − 12GΓ

ρh2
.

(12.22)
The asymptotic analysis shows that the frequency equations and the eigenforms

predicted by tho asymptotic theory in question follow from the exact frequency
equations and the exact eigenforms within an O(h) asymptotic error for all types of
boundary conditions (by exact frequency equations and exact eigenforms we mean
those obtained by the Reissner’s type theory).

The numerical analysis was carried out for the problem discussed above. Com-
putations were performed for plates of dimensions a = b = 1 m and thicknesses
h = 0,1 m and h = 0,04 m with the elastic constants E = 2,1 · 1011 Pa, μ = 0,25,
Γ = 5/6, and ρ = 7,951 · 103 kg/m3.

The key results can be summarized as follows. The first 10 eigenfrequencies of
high-frequency spectra are found. The calculations were performed by the exact
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theory and by the approximate theory for all types of boundary conditions possible
in the Reissner’s type theory. The actual errors of the approximate theory are found.
The calculations were performed for all types of boundary conditions and the plate
thicknesses 0,1 m and 0,04 m. For the case in which the free edge conditions were
imposed at the sides x = ±a, more detailed investigation was carried out. The first
10 eigenfrequencies for plates of thickness 0,2 m, 0,3 m, 0,4 m, and 0,5 m and
the corresponding actual errors are calculated. The eigenforms corresponding to the
first 10 eigenfrequencies are determined. The calculations were performed by the
exact and approximate theories for all types of boundary conditions and the plate
thickness 0,1 m. In the case of the free edge conditions, the eigenforms are found
for the plate of thickness 0,04 m as well. For the eigenforms in calculation of which
the approximate theory leads to the largest errors, the graphs of the rotation angles
Ψx and Ψy versus the coordinate x are constructed.

Let us point out some general features characteristic of high-frequency spectra
and the approximation of these spectra by the approximate theory.

The frequencies of the bending spectrum are higher than those of the shear spec-
trum. (Calculation show that for all types of boundary conditions at x = ±a, only
two frequencies of the first ten belong to the bending spectrum.) The accuracy
for the frequencies belonging to the bending spectrum is, as a rule, less than that
for the frequencies belonging to the shear spectrum. This is quite natural, since in
the approximate theory, the equation responsible for the shear vibrations is exact,
whereas the equation responsible for the bending vibrations is approximate. While
the approximate theories when applied to low-frequency vibrations yield higher val-
ues for the eigenfrequencies compared with the exact ones, this is not the case for
high-frequency vibrations. For high-frequency vibrations, no monotonic increase in
the relative error with the mode number is observed either. Of course, lower fre-
quencies are, on the average, predicted more accurately than higher frequencies.
However, for high frequency vibrations, the situation in which a frequency with
a larger mode number is predicted more accurately than many frequencies with
smaller mode numbers is usual.

Let us briefly dwell on the results of calculation of eigenforms. We carried out
the investigation of the accuracy provided by the approximate theory for eigen-
forms as follows. For all types of boundary conditions, analytical expressions for
the potentials F(x, y) and Φ(x, y) were obtained according to the exact and approx-
imate theories. Then the eigenforms represented by F(x, y) were compared with
those represented by Φ(x, y). As a result, it was established that most of eigenforms
predicted by the approximate theory virtually coincide with those predicted by the
exact Reissner’s type theory. The errors turned out to be noticeable only in the case
of the free edge conditions at x = ±a. Therefore, the subsequent discussion per-
tains just to this type of boundary condition (h = 0,1 m). It has been established
that the eigenforms predicted by the approximate theory and by the exact theory are
in quite good agreement, which allows us to conclude that the approximate theory
provides high accuracy in predicting eigenforms as well. This statement is valid for
the overwhelming majority of eigenforms. Nevertheless, in exceptional cases, the
difference in eigenforms predicted by the exact and approximate theories can be
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large. It should be emphasized that such cases are encountered rather rarely: among
eigenforms found in the course of the present investigation (10 eigenforms were
calculated for each of the eight types of boundary conditions), the exact and the
approximate theories were established to disagree only in one case.

12.7 Discussion of the Physical Meaning of Obtained Results

From the physical viewpoint, it seems obvious that the high-frequency vibrations are
produced by the shear phenomena. The presented asymptotic estimates confirm this
assertion. Indeed, for the low-frequency vibrations the vector Ψ = −∇w+γ of rota-
tion angles is actually determined by the deflection w, and the vector γ of transverse
shear deformation represents the unimportant refinements: γ ∼ hΨ in the vicinity of
the boundary and γ ∼ h2Ψ inside the domain. For the high-frequency vibrations the
situation is quite opposite: the vectorΨ of rotation angles practically coincides with
the vector of transverse shear deformation γ, and the deflection w adds unimpor-
tant refinements:Ψ ∼ γ, ∇w ∼ hΨ. Since the nature of the high-frequency shear and
high-frequency bending vibrations is the same (in particular, this is confirmed by
the coincidence of leading eigenfrequency terms in the shear and bending spectra),
the equations for both vibrations naturally seem to be similar. This is just the case
in the suggested statement of problem for the high-frequency vibrations: Eq. (12.13)
for the bending vibrations practically coincides with Eq. (12.8) for the shear
vibrations.

Thus, if we assume similarity of the bending and shear vibrations, then the or-
der of the system with respect to the space coordinates is reduced. This means that
yet another function is not included. Since we already have the equations for the
shear and bending vibrations, the equation for this function is likely to be the static
equation. In the presented statement, Eq. (12.15) for ϕ just does not contain the
time derivatives. From the physical considerations, it is obvious that this function
characterizes the bending phenomena and has no importance in the problem of high-
frequency vibrations. This assertion is supported by the fact that this function rapidly
varies with respect to the space coordinates, as we can see from Eq. (12.15), and pen-
etrates into the entire plate domain. Would this function be of primary importance
for high-frequency vibrations, we should adopt that the plate theory does not apply
to this problem. Thus, the possibility of stating the problem without rapidly varying
functions seems to be natural from the physical viewpoint. The boundary conditions
in the proposed statement are also worth saying a few words. First, it must be noted
that there are four possible boundary conditions, and two of them are kinematic:
Ψν |c = 0 (the angle of rotation about the tangent) and Ψτ |c = 0 (the angle of rota-
tion about the normal); the other two are the force conditions: M∗

ν

∣∣∣
c
= 0 (reduced

bending moment) and Mτ|c = 0 (torque).
Note that the meaning of the kinematic and the force conditions slightly change

in proceeding from the original statement to the approximate statement in the Reiss-
ner’s type theory. For the approximate statement, the conditions Ψν |c = 0 and
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Nν |c = 0 are equivalent, since N=GhΓΨ , and the force condition Nν |c = 0 becomes
kinematic. The kinematic condition w|c = 0 disappears in the approximate state-
ment, and the deflection appears in the condition M∗

ν

∣∣∣
c = 0 , since M∗

ν =Mν−GhΓw ,
that is, it becomes part of the force boundary condition. A certain symmetry for the
problem of high-frequency vibrations is not restricted by the similarity of Eqs (12.8)
and (12.13). The similarity also occurs for the boundary conditions. In fact, the con-
dition Ψν |c = 0 yields Ψτ |c = 0 , and the condition M∗

ν

∣∣∣
c
= 0 yields Mτ|c = 0 by

the substitution Φ→ F, F → −Φ. Such symmetry also supports the cited statement
(rather aesthetically than physically).
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