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Anomalism in mechanical properties
of nanosize objects
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Model of finite 2D (3D) crystal.

White circles represent 2D crystal or medium layer of 3D crystal.

Gray / black circles represent atoms from upper / lower layers (3D).



The calculated values for the moduli (2D)

V| = Uso, E = E:

i\r - J_ | _L'?\"T

e
|
e

£

v — Poisson coefficient, £ — Young modulus;
N — number of atomic layers in x (2D} and z (3D) directions;
N, — an ambiguous parameter (N — 1 < N,

Indexes 1 and 2 correspond to tension in x and y directions.

Index oo corresponds to macroscopic case (N — o¢).



Relative values for the moduli
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Number of atomic layers
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Dependence of the Young modulus and Poisson ratio

on the number of atomic layers (2D).



Dimension

Parameter

Designation

Min value

Max value

2D
3D
2D
3D

Young modulus
Young modulus
Poisson coefficient
Poisson coefhicient

E .I.-"Illr Ea_
E III-"IIIr El
U/ Vs

V[V

1.00
0.87
0.53

0.57

2.00
3.83
1.00
1.12

Maximum deviations from macroscopic values, 2-layer nanocrystals.
(3D calculations by O. S. Loboda.)

Conclusions

e Deviation of mechanical properties from macroscopic values is pro-
portional to 1/N, where N is the number of atomic layers.

e The values of mechanical properties essentially depends on the

definition of material volume, which is ambiguous at nanoscale.

e Nanoscale effects are more propaunced in 3D then in 2D.



Bending stifiness of nanocrystals

Figure 1: Bending of nanocrystal strip.



Formulation of problem:
N = 2 layers in y direction, JJ >> N layers in x direction.

From one layer to another forces (),, vary linearly, so that
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Interaction between atoms:

F(a;m) = CAajy, F(bjn) = CAbjy, C E Fllag) > 0.

Solution of equations of equilibrium for atoms of strip:
n
C

Abjn =0, AGjn =

Angle between heighboring atomic layers a and curvature a:
A _f fo o
def ﬁ{a{j;\: / 2 — ﬁ(!ﬂ; 2 def y
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Bending stiffness of 1‘11:::111::}(?.1‘}--'5?_.&} r:amp:
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Bending stiffness in terms of macroscopic parameters:
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Let be N, = N. Then F1 = F... In this case:

o1 Eoo H’ :
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Here D is bending stiffness of strip, known from microscopic theory.



Dependence of parameter & = D/D.. from number of atomic layers:

% N

Figure 2: Dependence of bending stiffness from number of lavers.

Problem: The single atomic layer forming the nanotube would have
zero bending stiffness, so that such nanotube would be unstable.



Mechanical models of atom




Different mechanical models of atom

e Afom is considered as a material point. Microstructure of atom
is ignored. Afom has translation degrees of freedom only. Atoms
interact by the central forces.

e Afom is considered as a body-point. Microstructure of atom is
ignored. Atom has translation and rotation degrees of freedom.
Atoms interact by the forces and moments. Forces are not central.

e Afom is considered as a particle with microstructure. Atom has
internal degrees of freedom.



Bending stifiness of nanocrystals

Rotational degrees of freedom and moment interactions
of atoms are taken into account.

Figure 4: Moment interaction of two atoms.



Interaction between two atoms:

F=A-¢,
1
ol LEXTok X1 ;
A=0 5 T Cy 3 C = Cokk.
' [T
Here /' — force vector, M — moment vector,

(' — stiffness tensors.

4,

Kk — straln vectors,

=
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k — unit vector, perpendicular to the strip plane,

'=1Tp.

in the equilibrium position






Formulation of problem:

From one layer to another forces (),, vary linearly, so that

T
N
Z CL,)H =0 Z Rn YN — Vs,
n=1 n=1

The crystal sides rotate as a rigid body:.

Bending stiffness:

3
( 1{1{}

D = (N —U\(NHH@(BN—U,

Bending stiffness in terms of macroscopic parameters:
1
3N

D:D.X(l— l)+E.}CH(1—

N2 ) y H = ;‘T\’Th.-(y

Here F .. is elastic modulus, characterizing rotational stiffness, known
from the moment microscopic theory of elasticity.



Method of experimental determination of
bending stifiness of nano-objects

Idea of experiment.

e Let us consider two similar objects:
one of them is nano-size object; another is macro-size object.

e Let us find eigenfrequencies of considered objects w'!) and w'®

by the experimental method.

e We can select geometrical parameters of considered objects and

(1)
boundary conditions so that = = f(D1, Ds) = const.
wn

e If we know wil), w!?) and bending stiffness of macro-object Dy, we

can calculate bending stiffness of nano-object Dy.



1. Cantilever (elastic rod)

Boundary conditions:

w(0) = 0, w'(0) =0, w”(l) =0, w” (1) = 0.
Eigenfrequencies are depend on following parameters:

where (), depends on n only.

o

Let us consider two rods, having different physical and geometrical
characteristics. Then
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2. Rectangular plate

Dimension of plate: —a < x <a, —b<y<b

Boundary conditions:

; 0w ; ; 9w )
Wlpeay = 0, - =0, w|y—vp =10, — = ().
r=za fr:j:l.’g T—11 ‘ Y =+ : {)g:’ y=:|:|f‘r

Eigenfrequencies are depend on following parameters:
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Let us consider two plates, having different physical and geometrical
characteristics, but identical parameter a/b. Then
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3. Cylindrical shell (bending deformations only)
Dimension of cylindrical shell: R — radius of cylinder.
Cylindrical coordinates: z. 6.
Boundary conditions:

ug(0,t) = 0, w(0,t) =0, w.(0,t) =0,

ug(m,t) = up(—m,t), wim t)=w(—mt), . (7.t)=p.(—"71).

Eigenfrequencies are depend on following parameters:

D ]
ﬁﬂﬂ. where 2, depends on n only.
pl

Let us consider two shells, having different physical and geometrical
characteristics. Then

u.,t.tlﬁ I’]l J{);}Ré

o (1) n
vn () = EE! = 7 = |1
' wi) \Dopi R



4. Cylindrical spiral shell (bending deformations only)

Experiments by V. Prinz (Novosibirsk)
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Figure 6: Cylindrical shell and cvlindrical spiral shell.
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Figure 7: Cyvlindrical spiral shell.

Geometry of cylindrical spiral shell.

Spiral coordinates s, ¢ and cylindrical coordinates z, ©:

2= R(sina s+ cosa (), w=cosas—sinac(. (1)
Dimension of spiral shell:
—1/2 < Rs <1/2, —a/2 < R({ < a/2. (2)

Here R — radius of cylinder, o — angle of inclination of spiral.



Equations of classical shell theory.

V - T = pii, V-M+T, =0 (3)
w=-—-nX(Vu)-n T'=T a+Nn (4)

1
T-g+5(M-bec="Ag M =°C-s (5)
e==((Vw-a+a-(Vu)'), £=(Vg)at+s((Vu) )b (6
Here L A — force tensor and moment tensor, p — surface mass
density, u, ¢ — displacement vector and turn vector, g, £ — strain

tensors, 4 { 10— stiffness tensors, @ — unit tensor in tangential plane,

n — normal unit vector, b= —Vn, ¢ = —a x n.



Approximate equations of motion of thin shell.

Let us suppose, that
= 0. (7)

[[€ey

Equation of motion:

sin“ o— + cos" a— — ———— (A 4+ 1)*w +w| —
st oCt  40s20C*) | pR? o
(S)
e
sin” 2a ~ .
—— /A = .
Equation of indissolubleness:
oy 2y oy
.. 0w . 9 O%w 5 O°w .
smm2a ——— +sin” a—— +cos” a—— = 0. (9)
Js0C 052 IC*
Here w — displacement along vector n, D — bending stiffness.

Solution of motion equation, satisfying indissolubleness equation:

w(s,(,t)=W{(s, () e (10)



W = Z [(43 (pjs + q;C) + BJ. )sin|Aj(cosa s —sina ()]+

J=1

+(A5(pjs + q;C) + Bj) cos[Aj(cos e s — sina ()]},

. . . (11)

p;j =sina — (;, q; = cosa + 3, s
2 cos 2a €)?

' 9cosaf \j‘ (02 — 1)\

G O

+ 2022)

} élf Bt — constants, /\J-.- ------------- roots of characteristic equation
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Boundary conditions:

( [« f) ; ( [« T) ;

Ul =, ==, t] =0, ul——,——., 1) =0,
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Discussion of results.

Eigenfrequencies are depend on three parameters:
A e il [« o o
LT — d by (1. E. E y ” — J_‘ L :3._ + s om kJ.‘.E:I

Let us consider two shells, having different physical and geometrical
characteristics, but identical parameters a, [/ R, a/R. Then
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Acoustical and optical methods of measuring
of eigenfrequencies of micro-objects

[. Sokolov (A.F. loffe Physico-Technical Institute RAS, St. Petershurg)
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Figure 8: Experimental setup of the interterometer with adaptive photodetector.

sample

e Limited frequency range.
e Laser ray is a spot of certain diameter (not a point).
e Laser ray is focused with some error.

e Frequencies of what object is measured?



Conclusion: We can not measure eigenfrequencies of nano-objects.
We can measure eigenfrequencies of nano-objects on the micro-substrate.

Mechanical problems:
e At what correlation between nano-object and substrate sizes we
can obtain information about nano-object?

e What kind of connection of nano-object on substrate and connec-
tion of the substrate on the device frame is optimal?

e Determination of mechanical properties of nano-object by the
frequencies of system including nano-object and substrate.



Atomic Force Microscope

A. Ankudinov, A. Titkov (A.F. loffe Physico-Technical Institute)

Figure 10: Atomic Force Microscope.



e Limited frequency range.
e Needle of cantilever has certain curvature radius (not zero).
e Influence of substrate on eigenfrequencies of nano-object.
e Needle of cantilever acts on nano-object.
Conclusion: In principle, using AFM we can measure frequencies of

nano-objects. In fact, using AFM we measure frequencies of the system
of nano-objects and cantilever.

Mechanical problems:
e Determination of mechanical properties of nano-object by the
frequencies of system including nano-object and cantilever.

e Can we extract eigenfrequencies of nano-object from the spectrum
of system including nano-object and cantilever?



Method of experimental determination of mechanical
characteristics of nano-objects

D.A. Indeitsev, E.A. Ivanova, N.F. Morozov

Measuring device:
atomic force microscope

cantilever
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Object under
investigation

Method:

Mechanical characteristics of nano-object are
determined by the eigenfrequencies.

Main difficulty:
Eigenfrequencies of a system of nano-object and

cantilever, (not eigenfrequencies of the nano-object)
are measured.

Mechanics problem:

Development of a method of determination of
characteristics of nano-objects in conditions when
frequencies of system of nano-object and cantilever
and mechanical parameters of cantilever are known.

New results:
Method of an experimental research of nano-objects
with own dynamics is proposed.



Cantilever and nano-rod

D. Indeitsev, E. lvanova, N. Morozov

/7777

Figure 11: Cantilever (left) and nano-rod (right).
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Figure 12: Experiments by V. Prinz (Novosibirsk).



Free vibrations of system
Cantilever:

DyutY + pyii = 0, u(0) =0, u'(0)=0, u"(Ly) =0.

Nano-rod:

Dt +p=0,  v0)=0, V(0)=0 v"(Ly)=0.

-t

Interaction of cantilever and nano-rod:

D" (L1) = C(u(L1) —v(La)), Dov"(Lo) = —C(u(Ly) —v(La)).

9 1 9 22 g
Let us note A\ = |—w, p = w.  Frequency equation:
Dy Dy

|1+ cos(AL1)ch(AL1)| (1 + cos(jLa)ch(pLo)+
C
I)Q,U,'B

- [sin(pLa)ch(peLo) — cos(pulo)sh( ;_f.Lg)])—i—

== D_f\g [sin(AL1)ch(AL1) — cos(ALq1)sh(AL1)] (1 + cos(pLa)ch(pLs)) = 0.

17




Force vibrations of system
u(0) = Asin(t), A = const.

Solution has following form:

_P-l cos(A,rq) + Porsin( A1) + Pych{ A x1) + Pish(A.x; }] sin(€2t),

sin(€2t),

U

v = _Ql cos(ftyro) + Qo sin(prye) + Qch( o) + Qush( o)

o N 9 o
where A2 —4, = 2.
TA\D T AD,




Dynamical damping of cantilever vibrations:
u(lLq,t) =0.

Equation for determination €2:

14+-cos( s Lo )ch( prs Lo )+—=[sin( s Lo )ch( e, Lo ) —cos( gty Lo )sh( e Lo)] = 0.
2L
| L ¢  C
Following estimation takes place: <

D3 Dg,‘.f.'?'q

Hence, €2, is very near eigenfrequencies of nano-rod.



Method of determination of nano-objects characteristics
by the eigenfrequencies of a system consisting of
nano-objects and substrate

V.A. Eremeyev, E.A. Ivanova, N.F. Morozov

Investigated object:
regular structure of identical

nano-objects on a micro-substrate Results of measurements:

Eigenfrequencies of system of nano-
objects and micro-substrate are
measured.

Mechanics problem :

To determine mechanical characteristics
of nano-objects in conditions when
mechanical parameters of a micro-
substrate and eigenfrequencies of

A
E‘
AN
\ system are known.
nano-object

substrate




Determination of mechanical properties of nanoobjects

We propose the new method of determination of mechanical properties of one
nanocrystal or nanotube by experiments on oriented nanocrystals or nanotubes

arrays grown on substrate

Nanocrystals on (1120) sapphire grown by
multi-step pulsed laser deposition and one
nanocrystal. Diameter 1s 150-250 nm.
length is 1000 nm

Method.:

1. Frequencies of a substrate with
nano-objects are measured.

2. Frequencies of a substrate without
nano-objects are measured.

3. By comparison of two these

spectra, eigenfrequencies of nano-
objects are separated from a
frequency spectrum of a substrate
with nano-objects.



Analytical result:
It has been proved, that eigenfrequencies of

nano-objects can be separated from a frequency g E
spectrum of a substrate with nano-objects.
Equation of substrate vibrations:

g(uH) =0

. NDu o H |

IV

u't — 1N i =0,
T Cy(HL v+ (‘*( )

Eigenfrequencies of substrate.

Nano-objects do not move!

1+ cos(puH )ch(pH)

g(pt) = sin(pH)ch(pH) — cos(puH)sh(pH) \

Eigenfrequencies of nano-object: g(yH) -0 = u=0

- 1] P2 / substrate does not move!
1 + cos {.-H (:h LH =0, [ = G= w.




Calculation of eigenfrequencies and
eigenforms by numerical method.
3D statement of problem

substrate

eigenforms

Numerical results:

15 17 18\@1 23 25 o7 i1 3% 35 A7 39 \
\/ AY

nano-opject
frequencies

substrate
frequencies

nano-object
eigenforms




Calculation of eigenfrequencies.
3D statement of problem

substrate with
nano-objects (GHz) Substrate (GHz)

Zn0O

0.036494 0.036594 Sapphire

(0.103909

0.103971
0.104039 Nano-object (GHz)

(0.104106
0.104226
0.104322

| 0.10797

(.104467

0.104612 Nano-crystals ZnO
0.134652 0.134973 High: 1.5-3.0 mkm
0.136246 0.136017 Diameter: 30-100 nm
0.280004 0.280137

0.350831 0.352308
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