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Abstract A new method of describing the liquid–gas phase transition is presented. It is assumed that the
phase transition is characterized by a significant change of the particle density distribution as a result of energy
supply at the boiling point that leads to structural changes but not to heating. Structural changes are described
by an additional state characteristics of the system—the distribution density of the particles which is presented
by an independent balance equation. The mathematical treatment is based on a special form of the internal
energy and a source term in the particle balance equation. The presented method allows to model continua
which have different specific heat capacities in liquid and in gas state.

Keywords Liquid–gas phase transition · Cluster · Chemical potential · Source term

1 Introduction

The problem of description of phase transitions is a matter that attracts attention of researches working in
different areas of science: physics, thermodynamics, nonlinear mechanics, etc. [2–4,6,16,17,23,26,32,36,40,
45,44]. In spite of the difference in approaches and methods, all investigations are based on the opinion that
phase transitions are the result of structural modifications of substance under consideration and the nature
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of interactions at a microlevel. At present time several approaches to mathematical implementation of this
concept are developed. Each of them is used to solve certain problems. One of the conventional approaches
is based on the assumption of a sharp interface separating different phases. The local interfacial velocity is
then calculated from the driving force for the interface motion. The second approach which is based on the
theory of mixtures is developed in relation to the description of chemical reactions [11,20,48]. The basic
assumption of this approach is that there are several constituents at each point of continuum. Depending on
various conditions, these constituents can interact or not. The percentage of each constituent is determined
by the concentration, which is one of the basic variables. A third approach is based on the diffuse-interface
description developed by van der Walls [46] and Cahn [12]. The microstructural evolution is described by the
Cahn-Hilliard nonlinear diffusion equation [13] and the time-dependent Ginzburg-Landau equation [19]. This
approach is developed primarily in relation to the description of phase transitions associated rather with the
change of various physical properties of the substance than with the change of aggregative state, see [31]. The
key point of third approach is the use of so-called order parameters. Sometimes the order parameters really
play the role of parameters in the sense that they take one of two values depending on the phase state of the sub-
stance. For example, the vector of the electric polarization or magnetization can be order parameters. In some
cases, the order parameters are used as independent variables characterizing the process of phase transition.
Of course, the above classification is weak in the sense that, for example, the movement of the phase boundary
can be described within the framework of both the second and the third approaches, and the concentration of
the substance in a mixture can be considered as the order parameter. Nevertheless, the classification seems to
be useful because it gives an idea of the differences between the known approaches and allows us to evaluate
the place that our approach occupies among other studies.

In this paper we consider a model describing the liquid–gas phase transition. The phase transition problem
of liquid–gas is a classical and the simplest one which is presented in the classical textbooks on the equilibrium
thermodynamics. The conventional view is that this problem can be solved by using the van der Waals model.
However, not all details are very well investigated that is the reason for various publications, for example [1,9],
in this field. One direction of research is related to the improvement in the constitutive equations using models
of interaction of particles on the microlevel, see [7,10,22,49] among others. A simple analysis of the van
der Waals model results in the conclusion that there are problems which are not discussed in textbooks. For
example, if the parameters of the van der Waals model given in the classical books on thermodynamics for the
case of the water vapor phase transition are used then the compressibility of water calculated by using the van
der Waals equation turns out to be negative. This fact shows the inapplicability of the van der Waals model for
description of water. One can assume that a modification of the van der Waals equation can be a solution of the
problem. However, there is another problem. It is well known that during the liquid–gas phase transition both
the average value of the specific heat at constant volume and the character of its dependence on temperature
change significantly. The van der Waals model does not describe these facts. These disadvantages of the van
der Waals model are the motivation for the research presented below. The purpose of the investigation is to
propose a model which correctly describes the mechanical and thermodynamic properties of the liquid and the
gas and also the process of phase transition.

The proposed approach to the description of the liquid–gas phase transition is similar to the methods using
the order parameters as independent variables. We start with the data given in [33,39] where it is shown that
the molecules of water and liquids based on water can create clusters that have properties of large molecules.
When the temperature increases the clusters begin to disintegrate and the clusters fully disappear when the
liquid transforms to a gas. The cluster microstructure model was introduced by various authors. In the case of
phase transitions examples are given in [28–30,37,38,43]. In [37], for example, the phase transition gas–liquid
description is based on the introduction of clusters which are composed of hundreds of atoms or molecules.
Then, an explicit boundary between the phases is introduced and the balance equation is presented for the
activated molecules in the clusters. The main idea of our approach to the description of the liquid–gas phase
transition is that we consider the matter as a one-component medium which can be either in the liquid state
or in the gaseous state. We introduce the additional variable to indicate the number of clusters in a given
point of the medium, the value of which allows us to determine whether the substance is a liquid or a gas. In
fact, this additional variable can be considered as the order parameter. We suppose that the phase transition
should be accompanied by fast changing of the number of particles per unit mass (the ratio of the density of
particle distribution to the density of mass) that is due to the fact that at the boiling point the input energy
is necessary for the modification of the structure instead of heating. The mathematical formalization of the
proposed approach is as follows. To describe structure modifications we introduce the density of the particle
distribution as an independent characteristic, and for this quantity we formulate an additional balance equation
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[5,50]. The special choice of the form of the source term in the particle balance equation allows us to obtain
the desired behavior of this additional variable during the phase transition.

The implementation of the approach outlined above is impossible without a clear idea of what is men-
tioned by a particle in the cluster model of the liquid. There are two possible interpretations. According to one
viewpoint the particles are either single molecules or clusters consisting of several molecules. Thus, when the
clusters break up, the number of particles increases. Consequently, in a gas the number of particles per unit
mass is greater than in a liquid. According to another viewpoint, the particles are molecules and hybridized
electron clouds by means of which the molecules are held in clusters. Thus, the cluster consists of several
molecules (particles having mass) and several massless particles simulating links between the molecules in
the cluster. A system consisting of mass points which are connected by massless springs can be considered as
analog of such model of cluster. According to this viewpoint, when the clusters break up, the links disappear,
i.e. the number of particles decreases. Hence, in a gas the number of particles per unit mass is smaller than
in a liquid. Adoption of one of the viewpoints is a matter of principle, because it has an effect on both the
interpretation of the results and the construction of a mathematical model. Therefore, the preference of one
point of view is not a question of taste or intuitions. Choosing one or another model it is important to take
into account the problems that arise or do not arise in implementation of the mathematical model. In what
follows the implementation of the two interpretations of the conception “particle in the cluster model of liquid
is considered and a comparative analysis of two mathematical models is carried out.

2 Thermodynamic quantities in continuum mechanics

The liquid–gas phase transition is traditionally studied in classical thermodynamics, where equilibrium pro-
cesses (homogeneous in all points of the space) are considered. In equilibrium thermodynamics all assumptions
are fulfilled with reference to one mole of the substance under consideration. Both the first and the second
law of thermodynamics are generally accepted. In what follows we use the methods of continuum mechanics
that allow us to describe both equilibrium and non-equilibrium processes, including fast dynamical processes.
Since we consider liquid and gas we use the spatial description. As a result, all differential equations contain
material derivatives.

Let us choose an inertial reference system and observe the volume V (control volume) fixed in the reference
system. The first law of thermodynamics (the energy balance equation) states that there is a function of state
U (called internal energy) satisfying the equation

d

dt
(K + U ) = N e + Q, (1)

where d/dt is the total time derivative, K is the kinetic energy of the substance in the control volume, N e is
the power of external forces, Q is the energy supply from external sources per unit time.

The kinetic energy is assumed to be a quadratic form of velocities. As usual it is an additive function of
the mass and thus can be written in terms of the mass density of the kinetic energy κ

K =
∫

V

ρκ dV .

The definition of internal energy is less formal than that of the kinetic energy. As a matter of fact, the inter-
nal energy is the energy of motion on degrees of freedom which are ignored in the model under consideration.
In other words, the sense of the internal energy depends on the mathematical model used for the description
of the system. For example, in classical equilibrium thermodynamics the internal energy of the ideal gas is an
additive function of the number of particles and proportional to the temperature. In statistical thermodynamics
the internal energy is determined by the elastic interactions of the particles, and for the ideal gas it is equal to
zero. The difference of the approaches cannot give a cause for doubts about their correctness. The fact is that
the internal energy is an immeasurable quantity, and so there are no physical experiments which let us know
what the internal energy of the system under consideration is.

In many continuum mechanics applications the internal energy is an additive function of the mass [45].
Here we intend to take into account the formation and the decomposition of clusters, i.e. a change of the
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number of particles in the medium. Therefore, we suppose that the internal energy is an additive function of
the number of particles [50], and we will study the consequences of our supposition. Now we accept

U =
∫

V

ηu dV,

where u is the specific internal energy, η is the density of particle distribution.
The energy supply per unit time is determined due to adding (vanishing) of new particles to (out of) the

control volume and by the heat supply per unit time Q which is the sum of the heat supply per unit time in the
volume V and through the boundary of volume V

Q =
∫

V

ηq dV +
∫

�

n · h d�,

where q is the energy supply per unit time into the particles of the medium, h is the heat flow,� is the boundary
of the control volume, n is the unit vector normal to the boundary.

The local form of the balance of mass and linear momentum can be written as:

– mass balance

δρ

δt
+ ρ∇ · V = 0. (2)

Here V is the velocity of the particles in the given point, δ/δt is the material derivative

δ

δt
� = d

dt
�+ V · ∇�.

� is a field, ∇ is nabla operator.
– linear momentum balance

ρ
δ

δt
V = ∇ · T + ρF. (3)

Here F presents the specific action of external forces, T is the stress tensor. From the angular momentum
balance it follows that, if there are no couple stresses and specific external moments the stress tensor should
be a symmetric tensor.

By the standard transforms taking into account (2) and (3), the equation of energy balance (1) can be reduced
to the following local form

δ(ηu)

δt
= W + ηu

ρ

δρ

δt
+ ∇ · h + ηq.

Here W is the power of the internal interactions. For an ideal liquid or gas W can be expressed in terms of the
pressure p

W = p

ρ

δρ

δt
.

Consequently, the energy balance equation takes the form

δ(ηu)

δt
= p + ηu

ρ

δρ

δt
+ ∇ · h + ηq. (4)

The energy balance equation (4) should be transformed to a special form called reduced equation of energy
balance [5,50]. Let us denote

ηT
δS

δt
= ∇ · h + ηq. (5)

The quantities T and S defined by Eq. (5) are the absolute temperature and entropy related to one particle,
respectively. At the same time, the temperature T is considered to be some characteristic of the medium that is
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measured by a thermometer, and entropy S is introduced as a quantity conjugate with the temperature. Since
we suppose that the internal energy is an additive function of the number of particles it can be assumed that
the entropy is also an additive function of the number of particles. Note that this definition of entropy is dif-
ferent from the definition used, for example, in classical thermodynamics and physics, where an inequality is
introduced. In particular, the proposed definition does not coincide with the concept of an equilibrium process.
Substituting Eq. (5) into Eq. (4) we obtain the reduced equation of the energy balance

δ(ηu)

δt
= p + ηu

ρ

δρ

δt
+ ηT

δS

δt
. (6)

Note that Eqs. (5), (6) neglect the fact that a part of the energy supply can be used for the structure transitions.
Later it will be specified by introducing chemical potential as a quantity conjugate with the density of particle
distribution.

Let us assume that there are no massless particles in the system. Then, taking into account the relation
ηu = ρu∗ (where u∗ is the mass density of the internal energy) the energy balance equation (6) can be rewritten
in the form

δu∗
δt

= p

ρ2

δρ

δt
+ η

ρ
T
δS

δt
. (7)

When the density of mass and the density of particle distribution are linearly dependent functions (ρ = m0η,
where m0 = const), Eq. (7) can be reduced to the standard form

δu∗
δt

= p

ρ2

δρ

δt
+ T

δS∗
δt
, (8)

where S∗ = S/m0 is the mass density of the entropy. The energy balance equation (8) allows us to determine
the arguments on which the internal energy depends on and to obtain the Cauchy–Green relations

p = ρ2 ∂u∗
∂ρ

, T = ∂u∗
∂S∗

, u∗ = u∗(ρ, S∗). (9)

The notation u∗(ρ, T ) is widely used in classical thermodynamics. But keeping up mathematical stringent we
should write

u∗(ρ, S∗) = u∗(ρ, S∗(ρ, T )) = ũ(ρ, T ).

It should be noted that the definition of the temperature and entropy by Eq. (5) is arbitrary in some sense.
Formally, Eq. (5) can be replaced, for example, by the following definition

T
δ(ηS)

δt
= ∇ · h + ηq. (10)

However, in this case the temperature and entropy will appear in the Cauchy Green relation for the pressure.
When m0 = const the Cauchy Green relation for the pressure takes the form

p + T S∗ = ρ2 ∂u∗
∂ρ

.

That means that the Eqs. (5), (10) define not only the temperature and entropy, but also the internal energy.
These three quantities are always interdependent, and they should be defined simultaneously. With other words,
it is not possible to introduce at first the internal energy and then the temperature and the entropy. If in addition
to the temperature and entropy the density of the particle distribution and the chemical potential (responsible
for the fragmentation) are introduced, then all five quantities are defined simultaneously.
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3 Classical thermodynamics and continuum mechanics: comparison of the approaches by the example
of van der Waals Gas

Constitutive equations of gases are well known; they represent equations relating pressure, volume and temper-
ature. Among these equations some are based on theoretical investigations, others are pure empirical relations.
One of the best known constitutive equations describing the behavior of a real gas is the van der Waals equation
which is linked with the kinetic theory [8]. In classical thermodynamics this equation is just postulated. At the
same time, the specific heat under constant volume of the van der Waals gas is considered to be independent
of temperature and coincides with the specific heat of an ideal gas. It is an essential disadvantage of the model
which must describe the phase transition, as it is well known that the specific heat grows drastically near the
boiling point. In this context the question arises: is the constancy of the specific heat under constant volume a
consequence of the van der Waals equation or is this an independent statement? To answer this question we will
use the methods of continuum mechanics; by using the Cauchy Green relations we obtain the most general form
of the internal energy being in agreement with the van der Waals equation, and then, we find the expression
for the specific heat under constant volume. It is evident that the expression for the specific heat obtained in
this way does not contradict to the van der Waals equation. Before we present the solution of the problem we
discuss briefly the properties of the van der Waals equation in the same way as in classical thermodynamics.

The van der Waals equation is obtained for the model of a gas representing a set of spherical solid particles
interacting by forces

p = −aρ2 + RTρ

1 − bρ
, R = R̄/M. (11)

Here R̄ is the universal gas constant, M is the molar mass. Parameters a and b are determined from the exper-
imental estimated p − V − T data; by the parameter a attracting forces are taken into account, the parameter
b is related to the size of each molecule.

The van der Waals equation approximates not only real gases and vapors, but also liquids and transition
between them. To be sure, at constant parameters a and b the model is not good enough for any real sub-
stance but gives a good heuristic value for qualitative investigations. Phase diagrams corresponding Eq. (11)
at different values of temperature are shown in Fig. 1.

At T > Tcr the medium can be only in one (gas) state. If T < Tcr three states are possible: two stable
states—liquid 1/ρ1 and gas 1/ρg—and one unstable 1/ρ∗. In the critical point K the gas and the liquid phases
cannot be distinguished. Their temperature, pressure and density have values, which are characteristic for each

Fig. 1 Isotherms near the critical point of the equilibrium
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phase. Points on the line ac are responsible for the equilibrium of the liquid and the saturated vapor. At low
pressure the isotherm presents the properties of the gas. On the left hand side the approximately vertical part of
the isotherm is responsible for the very small compressibility of the liquid. The parts ad and ec are responsible
for the overheated liquid and the overcooled vapor (metastable state). The part ae is physically not admissible,
since here at increasing pressure the volume is also increasing.

The critical temperature and density are determined by the conditions

− 2aρ + RT

(1 − bρ)2
= 0, −2a + 2RT b

(1 − bρ)3
= 0. (12)

Hence,

Tcr = 8a

27bR
, pcr = a

27b2 .

For ordinary water Tcr = 647.096 K, pcr = 22.064 MPa. Then,

a = 1705.219862 Hm4 kg−2, b = 0.001692 m3 kg−1.

From the conditions Eq. (12) for the critical temperature and density it follows

ρcr = 1

3b
= 197 kg m−3.

Note that it does not coincide with the critical density of water ρcr = 322 kg m−3.
Now we consider the van der Waals equation from the point of view of continuum mechanics. Let us find

the most general form of the internal energy corresponding to the van der Waals equation. In accordance with
Eq. (9) the specific internal energy is a function of density and entropy, and the temperature is found as the
derivative of the internal energy with respect to the entropy. Since the constitutive equation (11) depends on the
temperature we must pass on to another thermodynamic potential for which the temperature is an independent
variable. Introducing the specific free energy f∗ = u∗ − T S∗ we reduce the energy balance equation (8) to the
form

δ f∗
δt

= p

ρ2

δρ

δt
− S∗

δT

δt
.

This implies the Cauchy Green relations

∂ f∗
∂ρ

= p

ρ2 = RT

ρ − bρ2 − a,
∂ f∗
∂T

= −S∗. (13)

Integrating Eq. (13)1 we obtain

f∗ = −aρ + RT ln
ρ

1 − bρ
+ g(T ).

From Eq. (13)2 we have

S∗ = −R ln
ρ

1 − bρ
− g′(T ).

Consequently, for the van der Waals gas the specific internal energy takes the form

u∗ = −aρ + g(T )− T g′(T ). (14)

In classical thermodynamics the free energy of the van der Waals gas is supposed to tend to free energy of
the ideal gas when ρ → 0. That is why, using the constitutive equation of the ideal gas p = RTρ, the free
energy of the van der Waals gas f∗ can be expressed in terms of the free energy of the ideal gas f id∗

f∗ = f id∗ − RT ln(1 − bρ)− aρ.
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Fig. 2 Dependence of the specific heat on the temperature

Hence, by using the Gibbs–Helmholtz equation (15) the internal energy of the van der Waals gas can be
expressed in terms of the internal energy of the ideal gas uid∗ [41]

u∗ = −T 2 ∂( f∗/T )

∂T
= uid∗ − aρ. (15)

The internal energy of the ideal gas is usually considered to be a linear function of the temperature. In this case
from Eq. (15) we obtain that the specific heat of the van der Waals gas under constant volume cv = ∂u∗/∂T
is constant and equal to the specific heat of the ideal gas. However, the energy supply does not lead to a
temperature increase during boiling process. In the framework of classical thermodynamics this phenomenon
can be explained only by a fast increase in the specific heat near the boiling point.

The expression for the internal energy (14) allows us to obtain different forms of the dependence of the
specific heat on temperature. In particular, choosing the function g(T ) as

g′′(T ) = − cid
v T 2

(T − C)3 + D
,

we obtain a non-monotone dependence of the specific heat from temperature (Fig. 2). Here cid
v is the specific

heat of the ideal gas, and C and D are some parameters. This dependence well describes the experimental data
at both the high and low temperatures, and it models also a significant increase in the specific heat near some
fixed temperature. However, this temperature cannot be identified as the boiling point since the boiling point
is not a constant and essentially depends on the pressure. Consequently, by means of the model of the van der
Waals gas it is impossible to describe a significant increase in the specific heat near the boiling point.

At the end of the section we mention that the van der Waals equation badly describes the behavior of
liquids. In particular it has a negative bulk modulus:

K = ρ
∂p

∂ρ
= RρT

(1 − bρ2)2
− aρ2 = −3 × 109 Pa.

Moreover, the model does not take into account the structure transitions occurring during the process of
the phase transition. Consequently, the development of an alternative model describing the liquid–gas phase
transition is an actual problem.

4 Particle balance equation: chemical potential: equation of structural transformations

Let us consider that during the phase transition some part of the energy supply is responsible for changing
the number of particles. We are sure that this fact has to be taken into account when structural transitions
are described. Therefore, instead of Eq. (5) we use a more general equation containing an additional term
accounting for structural transitions. Suppose that the thermal energy supply does not only lead to tempera-
ture, entropy, pressure and mass density changes but also lead to the number of particles changes because of
agglomeration or the decomposition of them. In this case the mass of a particle m0 in the relation ρ = m0η is
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not a constant and depends, for example, on the temperature. Then, the functions η and ρ become independent
variables. The density of particle distribution η is determined by the particle balance equation which can be
written by analogy to the mass balance equation (2) with a source term. Thus, the particle balance equations
takes the form [5,50]

δη

δt
+ η∇ · V = χ. (16)

Here χ is the rate of particle production per unit volume.
Let us denote [50]

ηT
δS

δt
+ η

δψ

δt
= ∇ · h + ηq. (17)

Analogous to the temperature and entropy, η and ψ appear in Eq. (17) as conjugate variables. The density of
particle distribution is a measurable quantity. Thus, Eq. (17) is the combined equation of structural transitions
(e.g. fragmentation) and heat conduction.

Inserting Eq. (17) into Eq. (4) we obtain the reduced energy balance equation in the sense of Zhilin’s
definition [50]

δ(ηu)

δt
= p + ηu

ρ

δρ

δt
+ ηT

δS

δt
+ η

δψ

δt
. (18)

From Eq. (18) follow the Cauchy Green relations

p = ρ2 ∂

∂ρ

(
ηu

ρ

)
, T = 1

η

∂(ηu)

∂S
, η = ∂(ηu)

∂ψ
, ηu = ηu(ρ, S, ψ). (19)

It is important to notice that instead of Eq. (17) we can introduce the following equation with the material
derivative of the density of particle distribution instead of δψ

δt

ηT
δS

δt
+ ψ̄

δη

δt
= ∇ · h + ηq. (20)

In this case the reduced energy balance equation takes the form

δ(ηu)

δt
= p + ηu

ρ

δρ

δt
+ ηT

δS

δt
+ ψ̄

δη

δt
, (21)

the internal energy becomes the function ηu(ρ, S, η), and the Cauchy Green relation for ψ̄ is written as

ψ̄ = ∂(ηu)

∂η
. (22)

In thermodynamics the derivative of the internal energy with respect to the number of particles is usually
called chemical potential [18,40]. Similar to (20) expressions are given in the classical textbooks [27,34,35,40].
Quantities ψ and ψ̄ have, in general, a different sense. However, ψ being the variable conjugate to the density
of particle distribution also can be treated as a chemical potential.

Which of the ways of the chemical potential introduction is more preferable? It is impossible to answer the
question unambiguously because of the fact that the chemical potential as well as the entropy and the internal
energy is immeasurable quantities. Immeasurable quantities are characteristics of a mathematical model, and
they are necessary for obtaining some relations that connect measurable quantities. Consequently, the pref-
erence of this or that chemical potential definition is determined by specific features of the problems under
consideration.1

Before using the proposed method for describing of processes in systems with a varying number of particles
it is necessary to demonstrate that under certain choice of the internal energy the definitions (17) and (20)
allow us to obtain the known constitutive equations for some simple models, in particular, for the ideal gas.

1 Details are presented in [24].
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At first we consider the definition (17). Let us represent ηu(ρ, S, ψ) as a sum of the internal energy of the
ideal gas and the term linearly depending on ψ

ηu = AρR/cid
v +1eS/cidM

v + Dρψ. (23)

From Eq. (19)3 it follows that

η = Dρ, (24)

i.e. if the internal energy is defined by Eq. (23), then the mass density and the density of particle distribution
are not independent variables. Hence, the source term in Eq. (16)2 equals to zero.

From Eqs. (19)2 and (19)1 it follows that

T = A

cid
v DM

ρR/cid
v eS/cid

v , p = RDM Tρ (25)

If we substitute D = 1/M relation (25)2 becomes the ideal gas law. If

A = cid
v T0

M
ρ

−R/cid
v

0 e−S0/cid
v ,

then from Eq. (25)1 follows the classical expression for the entropy of the ideal gas.

S = S0 + cid
v M ln T/T0 − R̄ ln ρ/ρ0. (26)

To determine the functionψ it is necessary to split Eq. (17) into two equations: the heat conduction equation
and the equation of structural transitions

ηT
δS

δt
= ∇ · h + ηq + Q, η

δψ

δt
= −Q, (27)

where Q characterizes the rate of energy exchange in the processes of the heat conductivity and the structural
transitions. Since according to Eq. (24) new particles in the system are not generated it may be assumed that
Q = 0, i.e. δψ/δt = 0.

Now we consider the definition of the chemical potential (20). It is significant that in this case formulation
(21) of the reduced energy balance equation is valid only if mass density and the density of particle distribution
are independent variables. When the particle masses are constant, we should use the reduced energy balance
equation in the form

δu∗
δt

= p + ρψ̄∗
ρ2

δρ

δt
+ T

δS∗
δt
,

where ψ̄∗ is the chemical potential per unit mass. In this case the Cauchy Green relation for the chemical poten-
tial (22) loses significance, and the chemical potential is determined by the equation of structural transitions

ψ̄∗
δρ

δt
= −QM.

On the other hand, the classical expression for the entropy of the ideal gas can be obtained from Eq. (21)
only in case of linear dependence of mass density on the density of particle distribution. Indeed, from Eq. (26)
it follows that

T = C

(
ρ

ρ0

)R/cid
v

eS/Mcid
v .

Integrating the Cauchy Green relation (19)2 for the case ηu = ηu(ρ, S, η) we obtain

ηu = CηMcid
v

(
ρ

ρ0

)R/cid
v

eS/Mcid
v + a1(ρ, η). (28)
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For the ideal gas from Eq. (19)1 it follows that

∂

∂ρ

(
ηu

ρ

)
= R

C

ρ0

(
ρ

ρ0

)R/cid
v −1

eS/Mcid
v .

Hence,

ηu = Cρ cid
v

(
ρ

ρ0

)R/cid
v

eS/Mcid
v + ρa2(S, η). (29)

The expressions (28) and (29) can be equal only if ρ = Mη.
Since entropy is an immeasurable quantity there is no necessity to postulate that the expression for the

entropy of the ideal gas agrees with that one accepted in the equilibrium thermodynamics. If the internal energy
is assigned, for example, as

ηu = Aηρe(Rρ/η+S)/Mcid
v ,

then the constitutive equation for the pressure is the same as the equation of the ideal gas state, and

u = cid
v T, ψ̄ =

(
Mcid

v − R
ρ

η

)
T, S = S0 + cid

v (ln T/T0 − ln ρ/ρ0)− R
ρ

η
.

Nevertheless, the introduction of the chemical potential by means of Eq. (17) is more preferable since this
allows us to pass on “standard” thermodynamic functions without any contradictions.

5 Simplest models taking into account structural transformations in liquids and gases

Before starting the study of the liquid–gas phase transition, we consider two models in which the structural
transitions of the substance are taken into account. The models are very simple, and they cannot describe
exactly the experimental facts. We consider these models in order to show the resources evolved from the
introduction of the density of particle distribution as a new independent characteristic of the system.

The first model describes the behavior of a liquid at a temperature far from the boiling point. It is well
known that the mechanical and thermodynamic parameters of liquids significantly depend on the temperature.
This characteristic property distinguishes liquids from gases and solids possessing constant mechanical and
thermodynamic parameters. We assume that the feature in question of a liquid is the result of structural tran-
sitions, namely the decrease in temperature is related to cluster formation, while the increase in temperature
leads to the decomposition of clusters.

Let the internal energy has form

ηu = Aρecρ+BS+kψ + Cρ2 + Dρψ

where A, B,C and D are parameters which should be estimated. Then, from the Cauchy Green relations
(19)2,3 it follows that

ηT = ABρecρ+BS+kψ, η = Akρecρ+BS+kψ + Dρ. (30)

Thus, according to Eq. (30) the ratio of the density of particle distribution to the mass density is a function of
the temperature

η

ρ
= D

1 − kT/B
. (31)

As temperature tends to B/k the function (31) rises steeply. However, we are interested in temperatures much
lower than this value.

The constitutive equation for pressure takes the form

p = ρ2
(

C + cDT

B − kT

)
. (32)
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Fig. 3 Graphical representation of Eq. (32) (note that the right branch will not discussed here)

Obvious that the term depending on temperature increases with increasing temperature (Fig. 3). Hence, Eq. (32)
correctly describes the behavior of pressure in a liquid. Certainly, contribution of the term depending on tem-
perature must be small in comparison with the term Cρ2 that remains when cD/k � C .

To find the specific heats we express the mass density of the internal energy in terms of temperature

u∗ = DT

B − kT
+ Cρ + Dψ.

Taking into account that from Eq. (30)1 it follows that

T ′
ψ = k

B
(B − kT )T,

we obtain the expression for the specific heat under constant volume

cv = DB2

(B − kT )2kT
(33)

and the expression for the specific heat under constant pressure

cp = cv +
√

p c2 D2 B2T

2(B − kT )4

(
C + cDT

B − kT

)−3/2

. (34)

Analysis of Eq. (33) shows that cv tends to infinity when T tends to zero or B/k, and cv approaches the
minimum value when T = B/(3k). According to the experimental data cv decreases with increasing tempera-
ture. Consequently, Eq. (33) correctly describes the behavior of the specific heat at constant volume when the
temperature is less then B/(3k) but not very low. Analysis of Eq. (34) shows that in this temperature range
cp can both increase and decrease subject to parameters of the model. This fact “agrees qualitatively” with
experimental data [21,25] since the specific heat under constant pressure is known to decrease with increasing
temperature in the case of most liquids and demonstrate non-monotone behavior in the case of water. Sketchy
the dependence of the specific heats on temperature for two different D is shown in the Fig. 4.

Since the entropy and the chemical potential are immeasurable quantities, the equations to determine them
can be excluded. In this case the system of equations describing the behavior of the medium consists of the
constitutive equation for pressure (32) and Eq. (31) relating the ratio of the density of particle distribution to
the mass density with the temperature. To close the system of equations we should add the equation of motion,
the mass balance equation and the particle balance equation. The source term in the last equation is not equal
to zero, and the constitutive equation for it should be formulated.

The second illustrative model describes the behavior of a gas when the temperature is much higher than
the boiling point. It is known that a gas encloses both neutral molecules and some number of ions [42].
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Fig. 4 Dependence of the specific heats on the temperature (D0 is constant)

Ions are generated by means of separating electrons from the neutral molecules, and they disappear as a result
of combining with electrons and producing neutral molecules.

Let the internal energy has the form

ηu = A1ρ
C+1eBS + A2ρekψ. (35)

Then, using the Cauchy Green relations (19)1,2 we obtain

p = A1CρC+1eBS, ηT = A1 BρC+1eBS, (36)

and hence,

p = C

B
ηT = C

B
ρT

(
η

ρ

)
. (37)

From Eq. (19)3 it follows that

η

ρ
= k A2ekψ. (38)

In view of Eqs. (35), (36), (38) we obtain the expressions for the specific heats

cv = 1

B

η

ρ
+

(
T

B
+ 1

k

)(
∂(η/ρ)

∂T

)
ρ

,

cp = C + 1

B

η

ρ
+

(
C + 1

B
T + 1

k

) (
∂(η/ρ)

∂T

)
p
. (39)

It is easy to see that when η/ρ = const the constitutive equation (37) passes into the ideal gas law, and the
specific heats turn out to be constant. To correct the expressions (37), (39) for variable ratio η/ρ it is necessary
to apply the mass balance equation and the particle balance equation. It is easy to show that from Eq. (16) it
follows that [50]

δz

δt
= χ

η
, z = ln

(
ρ0η

ρη0

)
, (40)

where ρ0 and η0 are the initial distributions of mass and particles. According to Eq. (38) linear dependence
between new variable z and the chemical potential is

z = k(ψ − ψ0).

Comparing the equation of structural transitions (27)2 with Eq. (40) we obtain

χ = −k Q.
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Fig. 5 Dependence of the ratio η/ρ on temperature

Of course, the obtained relation between the exchange heat and the source term in the particle balance equation
is governed by the special choice of the expression for the internal energy. However, for any form of the inter-
nal energy the constitutive equations for Q and χ cannot be independent. There are two variants. Either we
formulate the constitutive equation for Q and in this case the particle balance equation allows us to determine
χ , or we formulate the constitutive equation for χ , and then, the equation of structural transitions allows us to
find Q. Theoretically, a third variant exists. We can arbitrarily choose the constitutive equations for Q and χ ,
but in this case there is no freedom in choosing internal energy.

6 Description of the liquid–gas phase transition in view of structure transformations: variant 1

Let us discuss a method of describing the liquid–gas phase transition based on the assumption that the particle
is either a single molecule or a cluster of several molecules. According to our supposition the ratio η/ρ does
not depend on the temperature at sufficiently low temperatures that corresponds to the liquid state of matter
and at sufficiently high temperatures that corresponds to the gaseous state of matter. Near the boiling point the
ratio η/ρ should change abruptly. That behavior of function η/ρ is shown in Fig. 5.

The behavior of function η/ρ is determined by Eq. (40) which can be rewritten in the form

δ

δt

(
η

ρ

)
= χ

ρ
.

In order that the number of particles starts to change abruptly in the neighborhood of the boiling point, the
source term in the particle balance equation must depend on the temperature and has the localized burst near
Tb. In addition to that the change of particle number has to stop when η/ρ achieves a certain value: nl for
a liquid and ng for a gas. It means that the source term has to be proportional to the difference η/ρ − ng at
heating and to η/ρ − nl at cooling. The following function has the listed properties:

χ = Me
− (T −Tb)

2

ε1T 2
b

[(
η

ρ
− nl

)
e

sign(q+∇·h)
ε2 +

(
ng − η

ρ

)
e

sign(q+∇·h)
ε2

]
. (41)

Here the parameter ε1 has to be small enough that the function e
− (T −Tb)

2

ε1T 2
b could be an approximation of the

Dirac delta function δ(T − Tb). The parameter ε2 should be chosen so that e−1/ε2 � e1/ε2 . Parameters ε1 and
ε2 have to be positive.

Function M determines the rate of change of η/ρ and has to depend on the heat supply velocity. We can
take it in the form:

M = ηq + ∇ · h
εH

,

where H is the specific heat of vaporization.
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To explain the choice let us consider the vaporization process in a homogeneous system at T = Tb and sup-
pose that the heat is supplied only into the particles of the medium. Then, h = 0, and the source term has a form:

χ = ηq

εH

(
ng − η

ρ

)
.

From Eq. (41) it follows that

d(η/ρ)

dt
= q∗
εH

(
ng − η

ρ

)

where q∗ is the heat supply velocity per unit mass.
Integration of this equation with an initial condition

η

ρ

∣∣∣∣
t=t0

= nl

results:

ng − η

ρ
= (ng − nl) exp

⎛
⎝− 1

εH

t∫

t0

q∗ dt

⎞
⎠ .

Taking into account that
∫ t1

t0
q∗ dt = H , where t1 is a time when the whole liquid is vaporized, one can see

that the parameter ε characterizes how close the ratio η/ρ will be to ng with t → t1.
Now we are able to introduce an internal energy corresponding to liquid and gaseous states and phase

transition between them. It has to posses a few characteristic features of the model. First, the constitutive
equation for pressure must be similar the van der Waals equation in the area of gaseous state, weakly depend
on temperature in the area of liquid state, and the pressure must not stepwise change in the neighborhood of
the boiling point. Second, the specific heat at constant volume corresponding to the matter in liquid state must
be larger than the one corresponding to the matter in gaseous state. Let us define the internal energy as

ηu = ρg(Y )+ ρh(X)+ ρ f3(ρ),

Y = f1(ρ)e
BS+k1ψ, X = f2(ρ)e

k2ψ, (42)

g(Y ) = √
A1 + Y , h(X) = −√

A2 + X .

Here Ai , ki and B are constants that have to be identified.
Substituting Eq. (42) into the Cauchy Green relations (19) we obtain

T = ρ

η
g′(Y )BY, η = ρg′(Y )k1Y + ρh′(X)k2 X ⇒ η

ρ
= Bk2

B − k1T
Xh′(X),

p = ρ2g′(Y )∂Y

∂ρ
+ ρ2h′(X)∂X

∂ρ
+ ρ2 f ′

3(ρ)

= ρ2
(

T

B

(
f ′
1(ρ)

f1(ρ)
− k1

k2

f ′
2(ρ)

f2(ρ)

)
+ 1

k2

f ′
2(ρ)

f2(ρ)

)
η

ρ
+ ρ2 f ′

3(ρ). (43)

Note that η/ρ has to be positive. Since h′(X) is negative we assume that function X < 0.
Let us rewrite the constitutive equation for the pressure in a more suitable form. For that we split it into

two terms in such a way that one of them is small in case of liquid and another is small in case of gas

p = f4(ρ)T
m0η

ρ
+ f5(ρ)

(
1 − m0η

ρ

)
, (44)

f4 = ρ2

m0

1

B

(
f ′
1(ρ)

f1(ρ)
− k1

k2

f ′
2(ρ)

f2(ρ)

)
, f5 = ρ2 f ′

3(ρ).

ρ2

m0

1

k2

f ′
2(ρ)

f2(ρ)
+ ρ2 f ′

3(ρ) = 0
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Here m0 is the normalizing factor such that the ratio m0η/ρ is near to 1 for the gas and near to zero for the
liquid. Thus, the pressure of the gas is determined mainly by the first term of Eq. (44), the pressure of the liquid
is determined mainly by the second term of this equation. Let us give a concrete expression to functions fi (ρ).

Suppose that the gas pressure is determined by the first term of the van der Waals equation and assume
that a liquid is described in a way similar to the Tumlirz constitutive equation, i.e.

p = RTρ

1 − bρ

m0η

ρ
+

(
λρ2

1 − bρ
− aρ2

)(
1 − m0η

ρ

)
, (45)

where λ, r and a are parameters of the constitutive equations. Since the term −aρ2 in van der Waals equation
stays for a liquid, we relate it to the liquid part of the pressure.

Then, we obtain:

f1(ρ) = C1

(
ρ

1 − bρ

)m0 B R

(1 − bρ)m0k1λ/bem0k1aρ,

f2(ρ) = C2(1 − bρ)m0k2λ/bem0k2aρ, f3(ρ) = −λ
b

ln(1 − bρ)− aρ + C3, (46)

where C1,C3 and C2 < 0 are dimensional integral constants that do not appear in the final equations.
Using the condition of equality of the pressure in the liquid and gas at the boiling point we find the

dependence of boiling point Tb on the mass densities of the liquid and gas:

f4(ρg)Tb

(
m0η

ρ

)
g

+ f5(ρg)

[
1 −

(
m0η

ρ

)
g

]

= f4(ρl)Tb

(
m0η

ρ

)
l
+ f5(ρl)

[
1 −

(
m0η

ρ

)
l

]
,

where ρg and ρl are the mass densities of the liquid and gas, respectively.

Expressing, for example,

(
m0η

ρ

)
g

in terms of the pressure with the help of the constitutive equation (45)

we can obtain the dependence of the boiling temperature on pressure.
Let us determine the specific heats under constant volume for a gas and a liquid. According to the definition

the specific heat under constant volume is determined as a partial derivative of the mass density of the internal
energy u∗ = u(T, ρ, η/ρ) with respect to the temperature. By using Eq. (42) we obtain

cv = ∂

∂T

(
ηu

ρ

)
= ∂g(Y )

∂T
+ ∂h(X)

∂T
. (47)

From Eqs. (43), (42) follows that the function g(Y ) and h(X) are found as roots of quadratic equations. Since
g(Y ) has to be positive and h(X) negative we get:

g = T

B

η

ρ
+

√(
T

B

η

ρ

)2

+ A1,

h = B − k1T

Bk2

η

ρ
−

√
(B − k1T )2

k2
2 B2

(
η

ρ

)2

+ A2.

The condition
B − k1T

k2 B
> 0 is assumed.

Then,

cv = 1

B

(
1 − k1

k2

)
η

ρ
+ 1

B

⎛
⎜⎜⎜⎜⎝

T√
(Tη/ρ)2 + A1 B2

+ k1

k2

B − k1T

k2 B

1√(
B − k1T

k2 B

η

ρ

)2

+ A2

⎞
⎟⎟⎟⎟⎠

(
η

ρ

)2

.

(48)
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Note that the specific heat is proportional to η/ρ. It was assumed that ng > nl , at the same time cg
v < cl

v .
It means that the coefficient on η/ρ has to decrease significantly with the temperature increasing. This in turn
may complicate the model parameters’ determination.

Taking into account that the large values of η/ρ = ng correspond to the gaseous state we obtain the
approximate formula for the specific heat of the gas:

cg
v = ng

B

⎛
⎝1 + ngT√

n2
gT 2 + A1 B2

⎞
⎠ . (49)

The expression for the specific heat of the liquid can be obtained by putting η/ρ = nl in Eq. (48).
To rewrite the combined equation of structural transitions and heat conduction (17) in terms of the control

variables, we have to express ηT
δS

δt
+ η

δψ

δt
in terms of T , ρ and η/ρ. From the Eq. (42) one can find:

δψ

δt
= 1

k2

(
1

X

δX

δt
− f ′

2(ρ)

f2(ρ)

δρ

δt

)
,

δS

δt
= 1

B

(
1

Y

δY

δt
− k1

k2

1

X

δX

δt
+

(
k1

k2

f ′
2(ρ)

f2(ρ)
− f ′

1(ρ)

f1(ρ)

)
δρ

δt

)
.

By help of Eq. (46) the combined equation of structural transitions and heat conduction has the form:

ρ
δg

δt
+ ρ

δh

δt
+

(
λρ − RT

1 − bρ
− aρ

)
m0η

ρ

δρ

δt
= ∇ · h + ηq.

It is seen that the input of the density change term in the equation of structural transitions and the heat conduction
in the case of the liquid phase is very small.

Taking into account Eq. (47) for the specific heat, we can rewrite the combined equation of structural
transitions and heat conduction as follows:

ρcv
δT

δt
+ ρ

∂(g + h)

δ(η/ρ)

δ(η/ρ)

δt
+

(
λρ − RT

1 − bρ
− aρ

)
m0η

ρ

δρ

δt
= ∇ · h + ηq. (50)

6.1 The material parameter identification

Now we determine the material parameters of the model for a water vapor phase transition in a homogeneous
system.2

Since the bulk modulus is defined as K = ρ
∂p

∂ρ
we can get the equation:

Kw = Rρ0T0

(1 − bρ0)2
m0nl +

(
λρ2

0 (2 − bρ0)

(1 − bρ0)2
− 2aρ2

0

)
(1 − m0nl) (51)

where Kw = 2.2 × 109 Pa and ρ0 = 997.8 kg m−3 are bulk modulus and mass density of water at room
temperature T0 = 295 K.

From the expression for the thermal expansion α = 1

K

∂p

∂T
it follows that

RT0ρ0

1 − bρ0
m0nl = αwKw, (52)

where αw = 3 × 10−4 is the coefficient of water thermal expansion at room temperature.
To determine the parameters we have to choose the normalizing factor m0 and the coefficient b that is

related to the molecule size. Following [15], we suppose that b = 0.007 m3 kg−1. Let us choose the normal-
izing factor as the atomic mass of water multiplied by 1026. Thus, m0 = 3 kg. Note that the parameter m0

2 The experimental data are taken from [47].
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appears in the equations only in combination with η/ρ. Then, solving Eqs. (51) and (52) together with the
conditions that the boiling temperature Tb = 373 K corresponds to the normal pressure pb = 0.1 MPa for both
phases, allows us to determine the parameters of the constitutive equation:

a = 826.776 Nm6 kg−2, λ = 270.105 Nm6 kg−2,

nl = 0.00144 kg−1, ng = 0.3318 kg−1.

It is easy to check that at the critical point (ρcr = 322 kgm−3 Tcr = 647.096 K, pcr = 22.064×106 N m−2)
the ratio η/ρ = 0.1375 kg−1 is much closer to the ratio η/ρ for the gas state than for the water state.

The parameters A1 and B can be found from Eq. (49) for different temperatures. Thus, since cg
v =

1.508 k J kg−1 K−1 at 400 K and cg
v = 1.689 k J kg−1 K−1 at 800 K, then

A1 = 1.52 × 1011 m4c−4, B = 0.00037 K J−1.

The specific heat of vaporization (or the specific enthalpy of vaporization) corresponds to the amount of
energy that must be supplied to the system to convert a unit mass of water into the vapor phase at a constant
temperature and a given pressure. Thus [36],

H = ηu

ρ

∣∣∣∣
ng

nl

+ pb

(
1

ρg
− 1

ρl

)

= (g + h)|ng
nl + λ

b
ln
(1 − bρl)

(1 − bρg)
− a(ρg − ρl)+ pb

(
1

ρg
− 1

ρl

)
, (53)

where H = 2.260 × 106 J kg−1 is the specific heat of vaporization, ρl = 958.6 kg m−3, ρg = 0.59 kg m−3 are
the water and vapor densities at the boiling temperature. Note that the same expression for the specific heat
can be received after integration of Eq. (50).

Since the expression
B − k1T

k2 B
has to be positive over the entire temperature range, let us take

k1 = B/T f , k2 < 0,

where T f = 273.15 K is the freezing point of water.
Then, from the Eq. (53) and the condition that the specific heat of water cl

v = 4.15 k J kg−1 K−1 at room
temperature, one can find the last parameters of the model:

A2 = 2.658 × 1012 m4 c−4, k2 = −1.197 × 10−9 J−1.

Now it is easy to check that approximate expression Eq. (49) for the specific heat of gas is valid.
As a result the all parameters of the model are determined.
The dependencies of the specific heat of the different phases on temperature are presented in Fig. 6. It is

seen that the specific heat of water decreases and the specific heat of gas increases with increasing temperature.
It is in agreement with experimental data but the water-specific heat decreases faster that it should.

Figure 7 shows the dependence of the specific heat on the ratio η/ρ at the boiling temperature. It is seen
that the specific heat increases and then decreases drastically at the beginning of the structural transformation.
Then, around the value η/ρ = (η/ρ)cr the specific heat starts to grow slowly as it should do in the gas state.

It should be noted that in the classical approaches it is assumed that total heat supply goes to specific heat
changes, as a result the specific heat has a maximum around the phase transition point. We suppose that the
energy supply at the boiling point does not only lead to specific heat changes but also lead to a structural
modification that is why the specific heat decreases during the phase transition.

In this section the model of the liquid–gas phase transition, based on the assumption that the particle is
either a single molecule or a cluster of several molecules was constructed. A mathematical feature of this
concept is that the number of particles per unit mass increases dramatically during the transition from liquid
to gas (see Fig. 5). Several problems appeared in the process of practical implementation of the model. The
expression for the internal energy is quite complex, and attempts to simplify it lead to incorrect description of
some properties of either liquid or gas. Chemical potential in the cases of both liquid and gas phases does not
approach a constant and therefore significantly affects the structural changes and heat conduction equation
not only at the phase transition temperature, but far from it as well. It is at least counterintuitive. Attempts to
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Fig. 6 Dependence of specific heat on temperature

Fig. 7 Dependence of specific heat on the ratio η/ρ. T = Tb

develop a model that does not have these disadvantages were not successful. Difficulties arose also at the step
of the identification of the model parameters. A very slight change in the thermodynamic characteristics of the
material caused significant changes in the model parameters. Detailed analysis revealed that these problems
are related to the poor agreement between the following two factors: the heat capacity of the gas is less than
that of the liquid and the number of particles in the gas is greater than the number of particles in the liquid.

7 Description of the liquid–gas phase transition in view of structure transformations: variant 2

Below we present a model of the liquid–gas phase transition that is based on the assumption that the particles
are molecules and the bonds that hold them in clusters. The mathematical feature of this concept is that the
number of particles per unit mass decreases sharply in the transition process from liquid to gas. Thus, reducing
the number of particles corresponds to the reduction in the specific heat in this model. Therefore, this model
should be free from the shortcomings of the previous one. Next, we will see that this is indeed true. Let us
start with the assumption that the chemical potential approaches constant values for both liquid and gas states
—ψl and ψg correspondingly. Next, we will see that, in the framework of this model, the natural consequence
of the mentioned assumption is the constancy of the relation η/ρ.
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The source term in this model can be written analogous to Eq. (41) with the opposite sign.

χ = ηq + ∇ · h
εH

e
− (T −Tb)

2

ε1T 2
b

[(
nl − η

ρ

)
e
− sign(q+∇·h)

ε2 +
(
η

ρ
− ng

)
e

sign(q+∇·h)
ε2

]
.

Let us assign the internal energy as

ηu = ρC1 f1(ρ)
ϕ1(ψ/ψ0)eBS + ρC2ϕ2(ψ/ψ0)+ ρ f2(ρ) (1 − ϕ3(ψ/ψ0)), (54)

where ψ0 is a normalizing parameter, C1, C2 and B are dimensional constants.
By using the Cauchy Green relations (19)2,3 we find

η

ρ
T = BC1 f1(ρ)

ϕ1eBS,

η

ρ
ψ0 = C1 ln( f1(ρ)) f1(ρ)

ϕ1eBSϕ′
1 + C2ϕ

′
2 − f2(ρ)ϕ

′
3. (55)

Here ϕ′
i = ∂ϕi (ψ/ψ0)

∂(ψ/ψ0)
.

Then, we can rewrite Eq. (54) as follows:

ηu

ρ
= (C2ϕ

′
2 − f2(ρ)ϕ

′
3)T

Bψ0 − ln ( f1(ρ)) ϕ
′
1T

+ C2ϕ2 + f2(ρ) (1 − ϕ3).

As a result the specific heat is as follows:

cv = (C2ϕ
′
2 − f2(ρ)ϕ

′
3)Bψ0(

Bψ0 − ln ( f1(ρ)) ϕ
′
1T

)2 . (56)

In order that the specific heats of the liquid and gas states will not depend on the density let us choose the
functions ϕ1(ψ/ψ0) and ϕ3(ψ/ψ0) in such a way that:

ϕ′
1(ψg/ψ0) = 0, ϕ′

1(ψl/ψ0) = 0,

ϕ′
3(ψg/ψ0) = 0, ϕ′

3(ψl/ψ0) = 0.

The following functions have the listed properties:

ϕ1(ψ/ψ0) = −2

(
ψ

ψ0

)3

+ 3
ψl + ψg

ψ0

(
ψ

ψ0

)2

− 6
ψlψ f

ψ2
0

ψ

ψ0
+ C3,

ϕ3(ψ/ψ0) = A1

(
−2

(
ψ

ψ0

)3

+ 3
ψl + ψg

ψ0

(
ψ

ψ0

)2

− 6
ψlψ f

ψ2
0

ψ

ψ0

)
+ A2

where C3, A1 and A2 are dimensionless constants.
Then, the specific heat of liquid and gas in a distance from the boiling point have the form:

cl
v = C2ϕ

′
2(ψl/ψ0)

Bψ0
, cg

v = C2ϕ
′
2(ψg/ψ0)

Bψ0
. (57)

From Eqs. (55), (56) follows

η

ρ
ψ0 = cv(Bψ0 − ln ( f1(ρ)) ϕ

′
1T ). (58)

It should be noted that in the cases of sufficiently low and hight temperatures, when the chemical potential does
not depend on the temperature and being equal to ψl or ψg , the function η/ρ is also a constant for both states:

(
η

ρ

)
g

= n2 = cg
v B,

(
η

ρ

)
l
= n1 = cl

vB.
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It is seen that since cl
v > cg

v the ratio η/ρ should be greater for the liquid phase than for the gas phase.
In view of Eqs. (54), (55) from the Cauchy Green relation for pressure (19)1 we find

p = ρ2 (ln ( f1(ρ)))
′ C2ϕ

′
2 − f2(ρ)ϕ

′
3

Bψ0 − ln ( f1(ρ)) ϕ
′
1T
ϕ1T + ρ2 f ′

2(ρ) (1 − ϕ3) .

Let us choose functions f1(ρ) and f2(ρ) so that the pressure equation will be similar to Eq. (45). We can take:

f1(ρ) = C4ρ

1 − bρ
, f2(ρ) = −λ ln(1 − bρ)

b
− aρ,

where C4 is a dimensional integral constant.
Since the function ϕ1(ψg/ψ0) equals to constants at ψ = ψg and ψ = ψl we can denote:

Fg = cg
v

R
ϕ1(ψg/ψ0), Fl = cl

v

R
ϕ1(ψl/ψ0).

We may then choose the constants Ai so that:

ϕ3(ψg/ψ0) = Fg, ϕ3(ψl/ψ0) = Fl

As a result, the pressure for the liquid state is determined by the equation:

p|ψ=ψl = RTρ

1 − bρ
Fl +

(
λρ2

1 − bρ
− aρ2

)
(1 − Fl) . (59)

The expression for the gaseous state is analogous.

From the Eq. (59) we can find the bulk modulus K = ρ
∂p

∂ρ
and the coefficient of thermal expansion

α = 1

K

∂p

∂T
for the liquid state. Then, similar to the Variant 1, we put b = 0.007 m3 kg−1 and find the

parameters for the water vapor phase transition:

a = 826.776 Nm6 kg−2, λ = 270.105 Nm6 kg−2, (60)

Fl = 0.0004, Fg = 0.9955.

Assume that function ϕ2(ψ/ψ0) has a form:

ϕ2(ψ/ψ0) = (ψ/ψ0)
1/2 .

Then, from Eq. (57) for the specific heats it follows:

ψl

ψg
=

(
cg
v

cl
v

)2

, Bψ0 = C2

2cg
v

(
ψg

ψ0

)−1/2

,

and thus, from Eq. (60)(3,4) one can find

ψg

ψ0
= 0.7750, C3 = 0.0233.

To determine C2 write down the expression for the specific enthalpy of vaporization.

ηu

ρ

∣∣∣∣
ψg

ψl

+ pb

(
1

ρg
− 1

ρl

)
= (cg

v − cl
c)Tb + A

((
ψg

ψ0

)1/2

−
(
ψl

ψ0

)1/2
)

+λ
b

ln
1 − bρl

1 − bρg
− a(ρg − ρl)+ pb

(
1

ρg
− 1

ρl

)
.
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Fig. 8 Dependence of the specific heat on the density and ψ/ψ0 at T = Tb

Set the specific enthalpy of vaporization equal to the specific heat of vaporization H = 2.260 × 106 J kg−1

analogous to the Variant 1, we find:

C2 = 4.5387 × 106 J kg−1, Bψ0 = 1718.5827 K.

To find the two last constant C1 and C4 we have to find the specific entropies for both phases. Note that
from the Eq. (55) follows:

eBS = (C2ϕ
′
2 − f2(ρ)ϕ

′
1)T

C f1(ρ)ϕ1(Bψ0 − ln ( f1(ρ)) ϕ
′
1T )

. (61)

Thus, we have

Sg = 1

B
ln

cg
vT

C1 f1(ρg)
ϕ1(ψg/ψ0)

, Sl = 1

B
ln

cl
vT

C1 f1(ρl)ϕ1(ψl/ψ0)
.

Taking into account Eq. (58) we can write the mass density of the entropies:

Sg∗ = cg
v ln

cg
vT

C1
− Rϕg

1 ln
C4ρg

1 − bρg
,

Sl∗ = cl
v ln

cl
vT

C1
− Rϕl

1 ln
C4ρl

1 − bρl
.

Since Sg∗ = 7.9447 kJ kg−1 K−1 at 500 K and Sl∗ = 0.3228 kJ kg−1 K−1 at 295 K, we find that:

C1 = 1.1379 × 106 kJ kg−1 C3 = 1.8195 × 10−8 m3 kg−1.

Now, we can display the dependence of the specific heat on the density and chemical potential. The specific
heat at the boiling point is shown at Fig. 8. It is seen that it is a smooth function that decreases during structural
transformations and starts do grow slowly close to gaseous state.

To rewrite the combined equation of structural transitions and head conduction in more usual form one has

to find the expression for ηT
δS

δt
+ η

δψ

δt
in terms of the temperature, density and chemical potential. To do
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this we have to find the material derivation of eBS (Eq. 61) and, take into account the expression Eq. (56) for
the specific heat. As a result we get:

ρcv
δT

δt
+cv
ρ

[(
Tϕ′

1

φ
− ϕ1

)
Tρ

1 − bρ
− ϕ′

1T

φ

(
λρ2

1 − bρ
− aρ2

)]
δρ

δt

+ρcv
φ

Bψ0

[
ϕ′′

1 ln f1

φ
T 2 + ϕ′′

2 − f2ϕ
′′
1

ϕ′
2 − f2ϕ

′
1

+ φ

]
δ(ψ/ψ0)

δt
= ∇ · h + ηq,

where

φ = Bψ0 − ln ( f1(ρ)) ϕ
′
1T .

This expression is simplified at some distance from the boiling point. For example, for the gas phase it has the
form:

ρcg
v

δT

δt
− RT

1 − bρ
Fg
δρ

δt
= ∇ · h + ηq.

The carried out investigation has shown that the model based on the concept that the ratio η/ρ increases
in the structure transition process well describes the water vapor phase transition. All material parameters
can be identified easily and the proposed expression for the internal energy or the thermal equation of state
p = p(T, ρ) can be modified to describe some other specific features of the phase transition.

8 Discussion

In conclusion we give a comparison of the proposed method with the most famous descriptions of phase
transitions. Chemical thermodynamics description of phase transitions is based on the chemical potentials and
the chemical affinity of the phase transformation. Our definition of the chemical potential differs from the
classical ones. This definition allows us to consider the density of particle distribution and the mass density
as independent variables. Just due to this fact we can use ratio of the density of particle distribution to the
mass density as an order parameter. In addition, we proceed from the supposition that phase transitions are
dynamical processes and they can be very quickly ones. That is why the system of basic equations of the
proposed model includes the equations of motion. As a result the proposed approach allows us to describe
essentially non-equilibrium processes. In contrast to this approach in chemical thermodynamics quasi-equi-
librium processes are considered since the method of description of evaporation and condensation processes
is based on the Clausius-Clapeyron equation (see [14] for example) which describes the sequence transitions
from one equilibrium state to another.

We describe the liquid–gas phase transition on the base of the fundamental laws of mechanics. There are
different approaches to the description of the thermodynamic processes within the framework of continuum
mechanics. In some models the existence of a sharp boundary between phases is of great importance. There
are so-called interface tracking methods, which connected phase transition with the interface movement. In the
frame of our approach the present of a distinct phase boundary is not essential, and its existence is not assumed
a priori and the phase transition can occur simultaneously everywhere. If the phase boundary is present, then
its position can be determined as a result of the problem solution. A sign of phase boundary existence will be
a dramatic change of ratio η/ρ with respect to spatial coordinates changing.

Since the ratio η/ρ being the characteristic of number of clusters in a given point of the medium can be
considered as an order parameter which describes the process of phase transition, the phase-field approach with
the field variable corresponding to an order parameter is most similar to our approach. The distinction is that the
phase-field approach uses the difference of the mass densities as the order parameter for liquid/gas transitions.
Another difference between these two approaches is that in the frame of phase-field method the time evolution
of order parameter is usually assumed to be proportional to the derivative of free energy with respect to the
order parameter, whereas in accordance with our approach the source term in the balance equation for η/ρ is
not the derivative of free energy or some other thermodynamic potentials.

Almost all known models of continuum mechanics describe the situation when the number of particles
in the medium does not vary. That means the linear dependence between the density of particle distribution
and the density of mass. In this case the density of particle distribution is excluded and all quantities are
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considered to be additive functions of mass. We consider the density of particle distribution and the density
of mass as independent variables and following to [50] we assume the internal energy and the entropy to be
additive functions of number of particles, i.e. that variable which is associated with the order parameter. This
circumstance and the fact that the ideas of methods based on the use of order parameters are combined with
the methods of continuum mechanics and applied to the description of phase transitions associated rather with
the change of aggregative state of matter than with change of its certain physical characteristics distinguish
our method from the known approaches. Our approach allows us to describe both phase states with different
mechanical and thermodynamic parameters in a framework of a unified model. At the same time our approach
allows us to describe the behavior of matter immediately during the phase transition.

Within the framework of the proposed approach we have considered two interpretations of the concept of
particle in a liquid. Two mathematical models corresponding to one and another concept have been constructed.
The detail analysis shows that the second model based on the viewpoint that the particles are molecules and
the bonds which hold the molecules in clusters should be preferred. The reason is that the mathematical imple-
mentation of the second model is much easier than that of the first model, and hence, the second model is more
consistent with the nature.

Acknowledgments The authors are deeply grateful to D. A. Indeitsev for useful discussions on the paper.
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