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A New Approach to the Solution of some Problems
of Rigid Body Dynamics

A representation of the turn-tensor of an axisymmetrical rigid body by using the moment of momentum vector is pro-
posed. It is proved that for certain external moments the motion of an axisymmetrical rigid body differs from the motion
of the spherical rigid body only by the additional rotation around its axis of symmetry. Analogy between the problems of
the rotation of an axisymmetrical rigid body under the action of the moment, directed along the axis of symmetry of the
body and under the action of the constantly directed moment, is exposed. Exact solution of the problem of free rotation
of an axisymmetrical rigid body, taking account of a linear viscous friction, is constructed.
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0. Introduction

The part of rigid body dynamics, which is concerned with the solution of the problems of three-dimensional rotation of
rigid bodies and their systems, began in the papers by Leonard Euler [2]. The methods of solution of the problems,
worked out by Euler, are based on the use of vector technique. These methods are visual and the results obtained by
using them are easy-to-interpret. That is why methods of vector mechanics are usually used for the solution of engi-
neering problems. For the two hundred years of development of rigid body dynamics, these methods have not been
modified, and now they exist in a form as formulated by Euler. This fact is reflected both on the results, obtained up
to now in rigid body dynamics, and on tendencies of this science development.

Let us state briefly the results. 1. All problems of rigid body dynamics, exact analytical solutions of which are
known, were solved in the last century. These are cases of integrability by Euler, Lagrange, and Kovalevskaya. 2. A
number of problems, which have been solved incompletely, exist. In these problems analytical relations, defining the
motion of the angular velocity vector with respect to the rigid body, were found several tens of years ago [3], [10], but
complete solutions of these problems have not been constructed up to now. 3. The problems, which look very easy (for
example, the problem of rigid body rotation under the action of a constant moment) exist. But the opportunity to
solve these problems analytically even has not been discussed.

While analytical solutions of many “elementary” problems remain unknown, the main tendency of development
of rigid body dynamics consists in complication of the rigid body systems under consideration. Sometimes, the rigid
bodies involved in the system reach several tens in number. Solving such problems computers are used both for deriva-
tion of the differential equations and for their numerical solution. There are many publications on this subject. We
refer to [13] and some papers published for the last time [5], [11] only.

Not underestimating the importance of investigations, carried out in the field of the multibody systems, let us
pay attention to the fact, that absence of analytical solutions of the “simple” problems of rigid body motion under the
action of elementary moments is grate gap in rigid body dynamics. What is a barrier to the solution of such “elemen-
tary” problems and why is the interest in these problems lost? Evidently, this is caused by the fact, that the used
mathematical technique is not adequate to the problems which are solved. Vector technique, which can be used for the
solution of any rigid body dynamics problems, has some limitation. It is not convenient for description of finite turns of
a rigid body in three-dimensional space. Firstly, vectors of turn, defined as q ¼ qm (q is the angle of turn, m is the
unit vector, defining the direction of the axis of turn) do not obey the rule of vector composition, i.e., the vector of
turn q, which is the composition of two vectors of turn q1 and q2, cannot be represented as their sum: q 6¼ q1 þ q2:
Secondly, using the concept of vector of turn, it is difficult to introduce the simple and correct definition of the angular
velocity, as w 6¼ _qq: These and other difficulties are overcome, if the concept of the turn-tensor is used for description of
turns of a rigid body [14], [15]. At times, when Euler lived, tensor technique was not known and characteristics of
turns of rigid bodies in three-dimensional space were introduced by him descriptively. In the following years, when the
tensor technique was developed and introduced in many parts of mechanics, rigid body dynamics continued to use
descriptive manner of specifying rigid body turns, and this retarded the advance of rigid body dynamics. It is impor-
tant to note, that all known manners of specifying rigid body turns can be easily translated into turn-tensor language.
At the same time, the methods based on use of the turn-tensor give wide facilities for the solution of rigid body
dynamics problems compared with any other manner of turns description. An advantage of this approach is stipulated
as follows:

1. The turn-tensor admits an infinite number of different representations. This is important for solving many prob-
lems that cannot be solved analytically by using Eulerian angles or other known angles. Some of the problems look
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very simple, that allows to hope they will be solved analytically if the turn-tensor is represented in a suitable
manner.

2. Representation of the turn-tensor is not sure to be chosen beforehand. It can be chosen partially or completely while
solving the problem. Such approach is used in the paper by P. A. Zhilin [15] to study the problem of free rotation
of a rigid body. The new approach to the solution of a known problem allows to expose some important facts
concerned with the existence of three types of the rotation of a rigid body. These facts were not noted earlier.

One of the feasible representations of the turn-tensor will be proposed in this paper. This representation differs
from known representations of the turn-tensor by its dependence on the dynamic characteristics of a rigid body. The
methods of solving rigid body dynamics problems, based on the choice of dynamic characteristics of body motion
(kinetic moment vector, magnitude of the kinetic moment vector, angle between the kinetic moment vector and some
characteristic direction, and others) as the base variables, are worked out both in the theoretical investigations (e.g. [6])
and in applied works (e.g. [1]). Development of these methods is the promising trend in rigid body dynamics, especially
for nonconservative problems.

1. The turn-tensor and its use in the kinematics of a rigid body

In this section necessary information on the turn-tensor and the base formulae and definitions of rigid body kinematics
stated by using the direct tensor calculus is expounded. Detailed information on this question can be found in
P. A. Zhilin [14], [15].

Definition: A properly orthogonal tensor, i.e. a tensor which is a solution of the equations

P �PT ¼ PT �P ¼ E ; det P ¼ þ1 ; ð1:1Þ

where E is the unit tensor, is called a turn-tensor.
The turn-tensor usually term as the rotation tensor. The author follows P. A. Zhilin [14], [15], where the term

“turn-tensor” is used. There the concepts “turn” and “rotation” have different sense. The term “turn” is used for defin-
ing quantities describing instantaneous passage of a rigid body from one position into another. The term “rotation” is
used for defining quantities describing the motion of the body (process of passage from one position into another). The
turn-tensor does not depend on process of motion; it depends on two positions of a rigid body only (initial and termi-
nating). Therefore we use for it the term “turn-tensor” instead of “rotation tensor” as in the majority of the publica-
tions.

Definition: The tensors S(t) and Sr(t), defined by the formulae

SðtÞ ¼ _PPðtÞ �PT ðtÞ ; SrðtÞ ¼ PT ðtÞ � _PPðtÞ ð1:2Þ

are called respectively the left and the right spin-tensor.

Definition: The accompanying vector of the left spin-tensor w(t) and of the right spin-tensor W(t),

SðtÞ ¼ wðtÞ �E ; SrðtÞ ¼ WðtÞ �E ; ð1:3Þ

are called respectively the left and the right angular velocity vector.
The definition of the vector product as operator between vector and tensor can be found in the books on the

direct tensor calculus (see Lagally [7] or the appendix to Lurie [9]).
In rigid body dynamics the vector w(t) is called the angular velocity in the space and the vector W(t) is called

the angular velocity in the body. In continuum mechanics the left and the right angular velocity vectors are also
known as spatial and material angular velocities.

Eq. (1.3) can be rewritten in equivalent form known as the equations by Poisson:

_PPðtÞ ¼ wðtÞ �PðtÞ ; _PPðtÞ ¼ PðtÞ �WðtÞ : ð1:4Þ

The left and the right angular velocities are related by the formulae

wðtÞ ¼ PðtÞ �WðtÞ ; WðtÞ ¼ PT ðtÞ �wðtÞ : ð1:5Þ

If the turn-tensor is known, the left and the right angular velocities can be rapidly calculated:

wðtÞ ¼ �1
2ð _PPðtÞ �PT ðtÞÞ� ; WðtÞ ¼ �1

2ðP
T ðtÞ � _PPðtÞÞ� ; ð1:6Þ

where operator ( )� called vector invariant has the following sense (see [7], [9]): If the tensor A is represented as a sum
of diads, for example A ¼ ab þ cd, then A� ¼ a � bþ c� d:

The inverse problem (the problem of determination of the turn-tensor to the known angular velocity) is called
the problem by Darboux. There are two formulations of the Darboux problem:
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• The left Darboux problem is

_PPðtÞ ¼ wðtÞ �PðtÞ ; Pð0Þ ¼ P0 ; P0 �PT
0 ¼ E ; det P0 ¼ 1 : ð1:7Þ

• The right Darboux problem is

_PPðtÞ ¼ PðtÞ �WðtÞ ; Pð0Þ ¼ P0 ; P0 �PT
0 ¼ E ; det P0 ¼ 1 : ð1:8Þ

Theorem: Every turn-tensor can be represented as the composition of any number n of turn-tensors:

PðtÞ ¼ PnðtÞ �Pn�1ðtÞ � . . . �P3ðtÞ �P2ðtÞ �P1ðtÞ : ð1:9Þ

Theorem: If the turn-tensor PðtÞ is represented as the composition of two turn-tensors P1ðtÞ and P2ðtÞ; then
the angular velocity vector wðtÞ; corresponding to the turn-tensor PðtÞ; is expressed in terms of the angular velocity
vectors w1ðtÞ and w2ðtÞ; corresponding to the turn-tensors P1ðtÞ and P2ðtÞ; as follows:

PðtÞ ¼ P2ðtÞ �P1ðtÞ ) wðtÞ ¼ w2ðtÞ þP2ðtÞ �w1ðtÞ : ð1:10Þ

Euler theorem: Every turn-tensor PðtÞ 6¼ E can be represented uniquely in the form

PðqmÞ ¼ ð1� cos qðtÞÞ mðtÞ mðtÞ þ cos qðtÞ E þ sin qðtÞ mðtÞ � E ; jmðtÞj ¼ 1 ; ð1:11Þ

where mðtÞ is the fixed vector of the turn-tensor PðtÞ:
PðtÞ �mðtÞ ¼ mðtÞ �PðtÞ ¼ mðtÞ : ð1:12Þ

Definition: The straight line, spanned on the fixed vector of the turn-tensor m(t), is called the axis of turn of a
rigid body.

Using Euler representation of the turn-tensor, it is easy to derive the following expressions for the angular veloc-
ities:

wðtÞ ¼ _qqðtÞ mðtÞ þ sin qðtÞ _mmðtÞ þ ð1� cos qðtÞÞ mðtÞ � _mmðtÞ ; ð1:13Þ

WðtÞ ¼ _qqðtÞ mðtÞ þ sin qðtÞ _mmðtÞ � ð1� cos qðtÞÞ mðtÞ � _mmðtÞ : ð1:14Þ

Definition: The straight line, spanned on the left angular velocity vector w(t), is called the axis of rotation of a
rigid body.

Theorem: If the fixed vector of the turn-tensor PðqmÞ does not depend on time (m ¼ const), then the axis of
rotation of a rigid body coincides with the axis of turn of the rigid body, the right and the left angular velocities are
equal and they are calculated by the formula wðtÞ ¼ WðtÞ ¼ _qqðtÞ m: If the left angular velocity wðtÞ or the right angular
velocity WðtÞ has a constant direction and this angular velocity is the fixed vector of the turn-tensor P0 ¼ Pð0Þ; then
the axis of turn of a rigid body coincides with the axis of rotation of the rigid body, the right and the left angular
velocities are equal, and they are expressed in terms of the angle of turn q and the fixed vector of the turn-tensor m by
the formula wðtÞ ¼ WðtÞ ¼ _qqðtÞ m:

The base equation of the kinematics of a rigid body has the form

RAðtÞ ¼ RBðtÞ þPðtÞ � ðrA � rBÞ ; r ¼ Rð0Þ ; Pð0Þ ¼ E : ð1:15Þ

Here RA(t) and RB(t) are the position vectors of the points A and B of the rigid body, P(t) is the turn-tensor of the
rigid body.

2. Representation of the turn-tensor of an axisymmetrical rigid body
by using of the kinetic moment vector

Theorem: Let the inertia tensor of a rigid body in the reference position be

q ¼ lkk þ mðE � kkÞ : ð2:1Þ

Let the actual position of the rigid body be determined by the turn-tensor PðtÞ and the rigid body have the angular
velocity wðtÞ; and the kinetic moment vector (the moment of momentum vector) of the rigid body, calculated with
respect to some point of the body, be LðtÞ:

LðtÞ ¼ PðtÞ � q �PT ðtÞ �wðtÞ ð2:2Þ

In this case (see Fig. 1) the turn-tensor of the rigid body PðtÞ can be represented as the composition of two turn-
tensors:

PðtÞ ¼ PLðtÞ �P*
ðtÞ : ð2:3Þ
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The turn-tensor PLðtÞ is determined by the kinetic moment vector of the rigid body LðtÞ as solution of the left Darboux
problem:

_PPLðtÞ ¼ wLðtÞ �PLðtÞ ; wLðtÞ ¼ m�1LðtÞ ; PLð0Þ ¼ Pð0Þ : ð2:4Þ

The turn-tensor P
*
ðtÞ has the form

P
*
ðtÞ ¼ ð1� cos bðtÞÞ kk þ cos bðtÞ E þ sin bðtÞ k �E ð2:5Þ

where angle bðtÞ is expressed in terms of the right angular velocity corresponding to turn-tensor PLðtÞ:

bðtÞ ¼
Ð
ðm � lÞ l�1k �WLðtÞ dt ; WLðtÞ ¼ PT

LðtÞ �wLðtÞ ; bð0Þ ¼ 0 : ð2:6Þ

Proo f : Let us represent the turn-tensor of the rigid body P(t) as the composition of two turn-tensors:

PðtÞ ¼ PLðtÞ �P*
ðtÞ : ð2:7Þ

Here PL(t) is the turn-tensor, that is defined by formulae (2.4), and P
*
(t) is an unknown turn-tensor. Let us prove

that P
*
(t) has the form (2.5), (2.6). According to (1.10), the angular velocity, corresponding to the turn-tensor P(t)

represented by (2.7), is calculated by the formula

wðtÞ ¼ wLðtÞ þPLðtÞ �w*
ðtÞ ð2:8Þ

where w
*
(t) is the angular velocity, corresponding to turn-tensor P

*
(t). On the other hand, according to formulae

(2.1), (2.2), the angular velocity wL(t) can be represented as

wLðtÞ ¼ PðtÞ � ½ðl � mÞ m�1kk þE� �PT ðtÞ �wðtÞ : ð2:9Þ

Multiplying eq. (2.9) from the left through by PT(t) scalarly and substituting into it expressions (2.7), (2.8), we obtain

ðl � mÞ m�1kðk �P
*
T ðtÞ �WLðtÞ þ k �W

*
ðtÞÞ þW

*
ðtÞ ¼ 0 : ð2:10Þ

Direction of vector W
*
(t) is seen from (2.10) to be constant. Hence, vector W

*
(t) can be represented as

W
*
ðtÞ ¼ _bbðtÞ k ; _bbðtÞ ¼ ðm � lÞ l�1k �P

*
T ðtÞ �WLðtÞ : ð2:11Þ

According to formula (2.11) and the theorems above mentioned turn-tensor P
*
(t) has the form (2.5). Hence

k �P
*
T ðtÞ ¼ k and the angle b(t) is determined by formula (2.6).

Note: The theorem holds true if tensor q is not the tensor of inertia of a rigid body and even if quantities l, m
are not constant.

3. The use of representation of the turn-tensor by the kinetic moment vector
in rigid body dynamics problems

The second law of dynamics by Euler for a rigid body, having one fixed point, is formulated as follows:

_LL ¼ M ðP;w; tÞ : ð3:1Þ

&
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If the inertia tensor of a rigid body is axisymmetrical then y, according to formulae (2.1)––(2.6)

L ¼ mwL ; P ¼ PðPL; wLÞ ; w ¼ wðPL; wLÞ :

Hence the second law of dynamics by Euler can be rewritten as

ðmwLÞ� ¼ M ðPL;wL; tÞ : ð3:2Þ

Using the formulation of the second law of dynamics by Euler in the form (3.2) is the most efficient way for solving
problems of rigid body rotation under the action of the moments independent of the turns of the body around its axis
of symmetry. In this case, eq. (3.2) becomes more simple as it does not include trigonometric functions of angle b:

ðmwLÞ� ¼ M ðn; _nn; tÞ ; n ¼ PL � k : ð3:3Þ

Theorem: The motion of an axisymmetrical rigid body, having one fixed point, under the action of an external
moment, independent of the turn of the body around its axis of symmetry and the angular velocity corresponding to this
turn, differs from the motion of the spherical rigid body, having the same transverse moment of inertia, only by the
additional rotation around its axis of symmetry.

The P ro o f of this theorem follows from the equation of the motion of a rigid body in the form (3.3) and the
theorem of representation of the turn-tensor of an axisymmetrical rigid body (2.1)––(2.6).

As applied to some particular problems this theorem is known for a long time. For example, it has been stated in
the book by E. T. Whittaker [12] as applied to the case of integrability by Lagrange. In the general form this theo-
rem is stated for the first time.

4. The rigid body dynamics problems, that can be reduced to the Darboux problem

The objective of this section is to show the use of the proposed representation of the turn-tensor for the solution of the
concrete dynamics problems. Four problems will be considered below. Two of them (the problem of free rotation of a
rigid body and the problem of the rigid body rotation taking account of the resistance proportional to the kinetic
moment vector) have exact analytical solutions, that can be expressed in terms of elementary functions and visualized.
These problems are considered to show as the known results are obtained by using the proposed representation of the
turn-tensor. Two other problems (the problem of the rigid body rotation under the action of the moment directed
along the axis of symmetry of the body and the problem of the rigid body rotation under the action of the constantly
directed moment) are interesting because the method of their solving, based on using proposed representation of the
turn-tensor, allows to expose analogy between these problems. The analogy consists in the fact that both the problems
can be reduced to the Darboux problem (the former one can be reduced to the right Darboux problem, the latter one
can be reduced to the left Darboux problem), and moreover the right angular velocity in the former problem and the
left angular velocity in the latter problem are the same. In the case of constant magnitudes of the external moments
the analogy has practical importance, as the latter problem has not been solved up to now and a solution of the former
problem is known [8].

4.1 The rotation of a free axisymmetrical rigid body (see Fig. 2)

The problem is formulated as follows:

_LL ¼ 0 ; Lð0Þ ¼ L0 ; Pð0Þ ¼ E : ð4:1Þ

&
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Using (3.2), the problem can be reformulated as

_wwL ¼ 0 ; wLð0Þ ¼ m�1L0 : ð4:2Þ
After integrating eq. (4.2), the problem is reduced to the left Darboux problem

_PPL ¼ wL �PL ; wL ¼ m�1L0 ; PLð0Þ ¼ E : ð4:3Þ
The solution of the Darboux problem (4.3) is

PL ¼ PLðylÞ ; w ¼ m�1L0t ; l ¼ L0=L0 ; L0 ¼ jL0j : ð4:4Þ
According to (2.3)––(2.6), the turn-tensor of the body can be represented as

P ¼ PLðylÞ �P
*
ðbkÞ ; b ¼ ðl�1 � m�1Þ k � L0t : ð4:5Þ

The turn-tensor PL describes the precession of the rigid body around the kinetic moment vector. The turn-tensor
P
*
ðbkÞ describes the rotation of the rigid body around its axis of symmetry.

4.2 Rotation of an axisymmetrical rigid body taking account of the resistance proportional
to the kinetic moment vector (see Fig. 3)

The problem is formulated as follows:

_LL ¼ �kL ; Lð0Þ ¼ L0 ; Pð0Þ ¼ E : ð4:6Þ
Using (3.2), the problem can be reformulated as

_wwL ¼ �kwL ; wLð0Þ ¼ m�1L0 : ð4:7Þ
Having solved the differential equation (4.7), the problem is reduced to the left Darboux problem

_PPL ¼ wL �PL ; wL ¼ m�1L0 e�kt ; PLð0Þ ¼ E : ð4:8Þ
The solution of the Darboux problem (4.8) is

PL ¼ PLðylÞ ; y ¼ ðkmÞ�1 L0ð1 � e�ktÞ ; l ¼ L0=L0 ; L0 ¼ jL0j : ð4:9Þ
According to (2.3)––(2.6), the turn-tensor of the body can be represented as

P ¼ PLðylÞ �P
*
ðbkÞ ; b ¼ ðm � lÞ l�1k � ly : ð4:10Þ

The turn-tensor PLðylÞ describes the rotation of the axis of symmetry of the body around the constantly directed
kinetic moment vector. The turn-tensor P

*
ðbkÞ characterizes the rotation of the body around its axis of symmetry.

4.3 Rotation of an axisymmetrical rigid body under the action of the moment directed along the axis
of symmetry of the body (see Fig. 4)

The problem is formulated as follows:

_LL ¼ MðtÞ n ; n ¼ P � k : ð4:11Þ
In the form (3.2) the problem is formulated as

m _wwL ¼ MðtÞ n ; n ¼ PL � k : ð4:12Þ
Multiplying eq. (4.12) from the left through by PT

L and taking into account relations (1.4), (1.5), we obtain

m _WWL ¼ MðtÞ k : ð4:13Þ
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The following manipulations have been done:

PT
L � _wwL ¼ _wwL �PL ¼ ðwL �PLÞ� �wL � _PPL ¼ ðPT

L �wLÞ� �wL � ðwL �PLÞ ¼ _WWL :

After integrating (4.13), we have

WL ¼ m�1
Ðt
0

MðtÞ dt k þWL0 : ð4:14Þ

Thus, the problem is reduced to the right Darboux problem

_PPL ¼ PL �WL ; PLð0Þ ¼ E : ð4:15Þ
When the turn-tensor PL has been found, the turn-tensor of the body P can be determined by formulae (2.3)––(2.6);
that gives a complete solution of the problem. Let us discuss the solution of the Darboux problem (4.14), (4.15) in two
particular cases.

1. At the instant t ¼ 0 the angular velocity of the rigid body is directed along its axis of symmetry. Then

WL ¼ m�1
Ðt
0

MðtÞ dtþ L0

 !
k : ð4:16Þ

In this case the turn-tensor of the body (2.3) takes the form P ¼ PLðykÞ �P
*
ðbkÞ; where b and y are related by

b ¼ ðm � lÞ l�1y and y ¼
Ðt
0

k �WL dt: Hence

P ¼ PðqkÞ ; q ¼ l�1 Ðt
0

Ðt
0

MðtÞ dt dtþ L0t

 !
: ð4:17Þ

2. The magnitude of the external moment is constant. Then the right angular velocity (4.14) becomes a linear
function of time:

WL ¼ m�1Mtk þWL0 ð4:18Þ
This case has been studied in the book by A. I. Lurie [8], where the discussed dynamics problem is reduced to Dar-
boux problem and the obtained Darboux problem is reduced to the equation by Weber.

4.4 Rotation of an axisymmetrical rigid body under the action of a constantly directed moment
(see Fig. 5)

The problem is formulated as follows:

_LL ¼ MðtÞ m ; m ¼ const ; jmj ¼ 1 ; Pð0Þ ¼ E : ð4:19Þ
In general case the direction of the external moment does not coincide with the direction of the axis of symmetry of
the body at the instant t ¼ 0. Using (3.2), the problem can be rewritten in the form

m _wwL ¼ MðtÞm ; m ¼ const ; jmj ¼ 1 : ð4:20Þ
After integrating (4.20), we have

wL ¼ m�1
Ðt
0

MðtÞ dt m þ L0

 !
: ð4:21Þ

As a result, the problem is reduced to the left Darboux problem

_PPL ¼ wL �PL ; PLð0Þ ¼ E : ð4:22Þ
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When the turn-tensor PL has been found, the turn-tensor of the rigid body P can be expressed in terms of PL by
formulae (2.3)––(2.6). Let us consider two particular cases of the Darboux problem (4.21)––(4.22).

1. At the instant t ¼ 0 the direction of the kinetic moment vector coincides with the direction of the external
moment. Then

wL ¼ m�1
Ðt
0

MðtÞ dtþ L0

 !
m : ð4:23Þ

The solution of the Darboux problem (4.22), (4.23) takes the form

PL ¼ PLðymÞ ; y ¼ m�1
Ðt
0

Ðt
0

MðtÞ dt dtþ L0t

 !
: ð4:24Þ

According to (2.3)––(2.6), the turn-tensor of the body can be represented in the form

P ¼ PLðymÞ �P
*
ðbkÞ ; b ¼ ðm � lÞ l�1k �my : ð4:25Þ

The rigid body moves as follows. The axis of symmetry of the body rotates around the external moment. The angle
between the axis of symmetry of the body and the external moment is constant. Moreover, the body rotates around its
axis of symmetry. The angle of spin of the body differs from the angle of precession to a constant multiplier.

2. The magnitude of the external moment is constant. In this case the left angular velocity (4.21) becomes a
linear function of time:

wL ¼ m�1ðM tþ L0Þ : ð4:26Þ
The solution of the left Darboux problem (4.22), (4.26) can be expressed in terms of the solution of the right Darboux
problem (4.15), (4.18), that takes place in the problem of the rigid body rotation under the action of the moment,
directed along its axis of symmetry, and the solution of that is known.

Theorem: Let the turn-tensors P and P
*
be respectively solutions of the right and the left Darboux problems

_PP ¼ P �W ; Pð0Þ ¼ E ; _PP
*
¼ w

*
�P

*
; P

*
ð0Þ ¼ E : ð4:27Þ

If the angular velocities w
*
and W are related by w

*
¼ �W; then the turn-tensor P

*
is reversed to the turn-tensor

P : P
*
¼ PT :

To p ro v e the theorem it is sufficient to use the Euler representation of the turn-tensor (1.11), (1.12) and the
expressions for the angular velocities (1.13), (1.14).

5. The rotation of a free axisymmetrical rigid body in the resisting medium

In the previous section we discussed some problems that were solved by the method based on reduction of the dy-
namics problem to the Darboux problem. This method is efficient for some particular cases only. In case of an arbi-
trary angular velocity vector the solution of the Darboux problem is very difficult and a reduction of the dynamics
problem to a corresponding Darboux problem does not simplify the solution. The majority of rigid body dynamics
problems cannot be reduced to the Darboux problem. To solve these problems, we must integrate the dynamics and
the kinematics equations simultaneously. However, there exist problems that can be reduced to the Darboux problem,
but where nevertheless a simultaneous integration of the system of dynamics and kinematics equations is the more
efficient method of their solving. One such problem is discussed in this section.

An axisymmetrical rigid body is considered. The mass center of the body is fixed. Free rotation of the rigid
body, taking account of the resistance of surrounding medium, is studied. Interaction between the rigid body and the
surrounding medium is simulated by the moment of the linear viscous friction M vf ¼ �Kvf �w (see Fig. 6). The tensor
of viscous friction Kvf is supposed to be axisymmetrical and coaxial with the inertia tensor of the rigid body. The
accepted assumptions give the following formulation of the problem:

_LL ¼ �Kvf �w ; Kvf ¼ k3nn þ k12ðE � nnÞ ; n ¼ P � k ; ð5:1Þ
The discussed problem in the same formulation was studied for the first time in the book by K. Magnus [10]. A
particular case of this problem, when Kvf ¼ kE; was studied earlier in the book by R. Grammel [3]. (From the point
of view of mathematical complexity of a problem, there is no principal difference between the spherical and the axisym-
metrical tensors of friction.) In the books by Grammel and Magnus the discussed problem is reduced to the right
Darboux problem. However, the obtained Darboux problem is not solved in these books.

Let us consider an alternative approach to the solution of the discussed problem. Let us reformulate the problem
in the form (3.2):

_wwL ¼ �k12m�1wL þ ðk12m�1 � k3l�1Þ ðwL � nÞ n ; _nn ¼ wL � n : ð5:2Þ

&
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It is easy to show that the scalar equation

ðwL � nÞ� ¼ �k3l�1ðwL � nÞ ð5:3Þ

characterizing the rotation of the body around its axis of symmetry follows from the eqs. (5.2). Eq. (5.3) can be inte-
grated. This allows to express vector n, defining the direction of the axis of symmetry of the body, in terms of vector
wL:

n ¼
_wwL þ k12m�1wL

ðk12m�1 � k3l�1Þ ðwL � nÞ
; wL � n ¼ m�1k � L0 e�ðk3=lÞ t : ð5:4Þ

Thus, if vector wL is known, eqs. (5.4) give a complete solution of the problem: the first equation defines the motion of the
axis of symmetry of the body, the second one characterizes the rotation of the body around its axis of symmetry. Vector
wL can be found as solution of the nonlinear differential equation of the second order, that follows from system (5.2):

€wwL þ k3

l
þ k12

m

� �
_wwL þ k3k12

lm
wL ¼ wL � _wwL : ð5:5Þ

It is easy to show that the differential equation of the third order and the first integral

w
...
L þ 2

k3

l
þ k12

m

� �
€wwL þ k3

l
þ k12

m

� �2

þ k3k12

lm
þ w2

L

" #
_wwL þ k3k12

lm

k3

l
þ k12

m

� �
� ðw2

LÞ
�

2

� 	
wL ¼ 0 ;

w2
L ¼ m�2½ðk � L0Þ2 e�ð2k3=lÞ t þ ðL2

0 � ðk � L0Þ2Þ e�ð2k12=mÞ t�

ð5:6Þ

follows from eq. (5.5). Taking into account the expression for w2
L; the differential equation of the third order can be

considered as a linear equation with variable coefficients in wL. Let us look for the solution of the differential equation
(5.6) in the form of series

wL ¼
P1
n¼0

P1
m¼0

Cnm e�ðnk3=lþmk12=mÞ t : ð5:7Þ

Substituting series (5.7) into eq. (5.6) and equating to zero coefficients at the exponentials to different powers, we
obtain the following results:

wLðtÞ ¼ AR10ðtÞ þBR01ðtÞ þDR11ðtÞ ;

RpqðtÞ ¼
P1
n¼p

P1
m¼q

Cnm e�ðnk3=lþmk12=mÞ t ;

p ¼ 1; q ¼ 0 ) n odd; m even ;

p ¼ 0; q ¼ 1 ) n even; m odd ;

p ¼ 1; q ¼ 1 ) n;m odd ;

C10 ¼ 1 ; C01 ¼ 1 ; C11 ¼ 1 ;

Cnm ¼ � L3Kðn� 3;mÞ Cn�2;m þ L12Kðn;m� 3Þ Cn;m�2

m2Kðn� 1;m� 1Þ ½Kðn;mÞKðn� 1;m� 1Þ þK�

Kði; jÞ ¼ ik3

l
þ jk12

m
; K ¼ k3k12

lm
; L3 ¼ ðk � L0Þ2 ; L12 ¼ L2

0 � ðk � L0Þ2 :

ð5:8Þ
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Fig. 6. Resistance: M ¼ �Kvf �w



It has been proved that the series’ Rpq(t) uniformly converge at t 2 ½0;1½: Solution (5.8) includes three arbitrary
constants A, B, D. They can be determined by the initial conditions that are: values wL at t ¼ 0, the first equation of
(5.2) at t ¼ 0, and eq. (5.5) at t ¼ 0. The solution of the problem is considered in [4] in more detail.
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