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Abstract. In the report the main aspects of the shell theory based on the direct
approach are presented. The main attention will be focussed on the establishment of
the constitutive equations. It is shown that the deformation energy must be an integral
of a system of partial differential equations. Thus it can be expressed as a function
of integrals of the characteristic system of the ordinary differential equations. These
integrals are called the reduced deformation tensors. In order to found the structure of
the elasticity tensors a new theory of symmetry is introduced.

1 Introduction

At present the shell theory find out the new branches of applications. As an ex-
ample, biological membranes, thin polymeric films and thin structures made from
shape memory materials may be pointed out. In addition, the manufacture tech-
nology for some shells results in significant changes of the material properties.
As a result the conventional versions of the shell theory, based on the deriva-
tion of the basic equations from the 3D-theory of elasticity, can not be used.
In these situations the effective elastic modulus of the shell must be found di-
rectly for the shell structure. That means that we have to use the direct method
of the construction of the shell theory. The main idea of the direct approach
is the introduction of an elastic 2D-continuum with some physical properties.
The basic laws of mechanics and thermodynamics are applied directly to this
2D-continuum. The main advantage of the direct approach is the possibility to
obtain quite strict equations.

At present many variants of the shell theory exist. Most of them can be
characterized by two facts: a) they are based on two-dimensional equations and
b) they operate with forces and moments (moments of the higher order are
ignored). These two facts may be used for the following definition:

A simple shell is a 2D-continuum in which the interaction between different
parts of the shell is due to forces and moments.

A simple shell is a model for the description of the mechanical behavior of
shell-type structures. The theory of simple shells allows to make a correct plane
photo of three-dimensional phenomena. The main advantage of the theory of
simple shells is that this theory can be applied for shells with a complex inner
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structure - for multilayered, for stiffened, etc. In addition, such a theory can be
used in the analysis of biological membranes, etc. In this sense the theory of
simple shells allows the formalization of an old engineering problem - the built
up of the shell theory with effective stiffness.

Below only some part of the report is presented. The results are based on
works of authors (Zhilin, 1976; Zhilin, 1982; Altenbach, 1988; Altenbach and
Zhilin, 1988) with some new modifications.

2 General Nonlinear Theory

2.1 Kinematics of Simple Shells

The kinematical model of a simple shell is based on the introduction of a directed
material surface, i.e. the carrying surface each point of which is connected with
a orthonormal triad of vectors. In what follows the direct tensor notation – see,
for example, Lurie (1990) – will be used. In the reference configuration (t = 0)
the directed surface is determined by

{r(q1,q2); d1(q
1,q2), d2(q

1,q2), d3(q
1,q2)} ≡ {r(q);dk(q)}

with r(q) ≡ r(q1,q2) - the position vector defining the geometry of the surface,
q1,q2 ∈ Ω, dk(q) with k = 1, 2, 3 denote a triad of orthonormal vectors obeying
the condition dk · dm = δkm. In the actual configuration (t �= 0) we have

{R(q, t); Dk(q, t)}, Dk · Dm = δkm.

Note that R(q, 0) = r(q),Dk(q, 0) = dk(q). In addition, a natural basis can be
introduced

Rα(q, t) =
∂R

∂qα
≡ ∂αR, R3 ≡ N : N · Rα = 0, N · N = 1.

In what follows we use the relation d3 = n. For further derivations we will
introduce the dual basis

Ri : Ri · Rk = δi
k, R3 ≡ N.

Then we can define the following two-dimensional Hamilton operators

∇̃ ≡ Rα(q, t)
∂

∂qα
, ∇ = rα(q)

∂

∂qα
.

Let us introduce the first A and the second B fundamental tensors of the surface

A = ∇̃R = Rα(q, t) ⊗ Rα(q, t) = Rα ⊗ Rα = AαβRα ⊗ Rβ = AαβRα ⊗ Rβ,

1 = A + N ⊗ N, B = − ∇̃N = −Rα ⊗ ∂αN = BαβRα ⊗ Rβ = BαβRα ⊗ Rβ,
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where 1 is the unity second rank tensor. In what follows we accept a = A(q, 0) =
∇r, b = B(q, 0) = −∇n and n = N(q, 0). Note that all tensors here and below
are introduced as quantities of the 3D-space defined on the surface.

The motion of the directed surface can be defined as

R(q, t), P(q, t) ≡ Dk(q, t) ⊗ dk(q), Dk = δkmDm.

Here P(q, t) is an orthogonal turn-tensor, DetP = +1, P(q, 0) = 1. Let us
introduce the linear and the angular velocities v, ω of the body-points

v(q, t) = Ṙ(q, t), Ṗ(q, t) = ω(q, t) × P(q, t), P(q, 0) = 1, ḟ ≡ df

dt
.

For the further discussion we need a vector Φα characterizing the change of
P(q, t) along the surface

∂αP = Φα(q, t) × P(q, t), ⇒ Φα = −
1
2
[∂αP · PT ]x.

It is easy to show that

Φ̇α = ∂αω + ω × Φα, ∂αΦβ − ∂βΦα − Φα × Φβ = 0.

Note that Φα = 0 if we have only a rigid body motion.

2.2 Equations of Motion

The local form of equations of motion can be written as

∇̃·T+ρF∗ = ρ(v+ΘT
1 ·ω)·, ∇̃·M+T×+ρL = ρ(Θ1 ·v+Θ2·ω)·+ρv×ΘT

1 ·ω,

where T = Rα ⊗ Tα denotes the force tensor, M = Rα ⊗ Mα – the moment
tensor and T× ≡ Rα × Tα. The vectors F∗ and L are the mass density of the
external forces and moments respectively.

Let the vectors T(ν) and M(ν) be respectively the vectors of external force
and moment acting on the boundary curve with the external normal ν. Then
the formulae of Cauchy are valid

T(ν) = ν · T, M(ν) = ν · M.

Introducing the Piola-Kirchhoff tensors

TΠ =

√
A

a
(∇̃r)T · T, MΠ =

√
A

a
(∇̃r)T · M,

the local form of the equations of motion can be rewritten in the reference
configuration

∇ · TΠ + ρ0F = ρ0(v + ΘT
1 · ω)·,

∇ · MΠ + (∇RT · TΠ)x + ρ0L = ρ0(Θ1 · v + Θ2 · ω)· + ρ0v × ΘT
1 · ω.

Note that the last one equations are very convenient for formulating equations
of shell stability problems.
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2.3 Equation of the Balance of Energy

Let us formulate the balance of energy for the two-dimensional continuum
d

dt

∫
(ΔΣ)

ρ(K + U)dΣ =

∫
(ΔΣ)

ρ(F · v + L · ω)dΣ +

∫
C

(T(v) · v + M(v) · ω)dC,

where U is the mass density of the intrinsic energy. For isothermal processes U

is called the deformation energy. The local form can be expressed as

ρU̇ = TT ·· ∇̃v − (Rα × Tα) · ω − MT ·· ∇̃ω.

Introducing the energetic tensors (Lurie, 1990)

Te = (∇̃r)T · T · P, Me = (∇̃r)T · M · P,

finally we get
ρU̇ = TT

e ·· Ė + MT
e ·· Ḟ, (1)

where E,F denote the first and the second deformation tensors

E = ∇R · P − a, F = (Φα · Dk)rα ⊗ dk. (2)

For elastic simple shells from the energy balance equation (2) the Cauchy-Green
relations follow

Te =

√
A

a

∂ρ0U

∂E
, Me =

√
A

a

∂ρ0U

∂F
. (3)

2.4 Definition of the Tensors of Inertia. Restrictions on the Tensors
of Forces and Moments

The tensors of inertia ρΘα define the distribution of the mass in the material
body-points in the actual configuration. The following equation describes the
relation between the tensors of inertia in the actual and the initial configurations

ρΘα(q, t) = P(q, t) · ρ0Θ
0
α(q) · PT (q, t).

The next representations may be proved for the density, the first and the second
tensor of inertia of the directed surface

ρ0 = 〈ρ̃0〉, ρ0Θ
0
1 = −〈ρ̃0z〉c, ρ0Θ

0
2 = −〈ρ̃0z

2〉a, 〈f〉 =

h2∫
−h1

fμdΣ,

with c = −a × n, μ = 1 − 2zH + z2 G, H and G are the mean and Gaussian
curvatures, ρ̃0(q, z) denotes the 3D-density of mass.

It can be shown that the following relations are valid

ρΘ2 =
ρ

ρ0
〈ρ̃0z

2〉(1 − D3D3), ρΘT
1 =

ρ

ρ0
〈ρ̃0z

2〉(1 × D3). (4)

Besides, for simple shells of constant thickness and made from non-polar material
the restrictions

L · D3 = 0, M · D3 = 0, MT
e ·· [(F − b · c) · c] + TT

e ·· [(E + a) · c] = 0 (5)

are valid.
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2.5 Reduced Deformation Tensors

The specific deformation energy U = U(E,F) contains 12 scalar arguments. The
number of arguments can be reduced because we have to satisfy the restrictions
(5). Making use of (3) and (5) one may obtain the next system of equations for
the specific energy U(E,F)

(
∂U

∂E

)T

·· [(E + a) · c] +

(
∂U

∂F

)T

· · [(F − b · c) · c] = 0,
∂ρ0U

∂(F · n)
= 0. (6)

For the first equation of this system we have the characteristic system

d

ds
E = (E + a) · c,

d

ds
F = (F − b · c) · c, (7)

This is a system of an order 12, which has only 11 independent integrals. One
can choose the next 11 integrals

E =
1
2

[
(E + a) · a · (E + a)T − a

]
, Φ = (F − b·c)·a·(E + a)T +b·c·E+b·c,

γ = E · n, γ∗ = F · n. (8)

Of course, it is possible to choose another set of integrals instead of integrals (8),
but all of them may be expressed in terms of integrals given in (8). Arbitrary
function U(E,Φ,γ,γ∗) of the integrals (8) satisfies the first equation of the
system (6). However the second equation in (6) shows that the specific energy
does not depend of the vector γ∗. Thus we finally have U = U(E,Φ,γ). Tensors
E,Φ,γ are called the reduced deformation tensors. Here E denote tensile and
plane shear strains, Φ - bending and torsional strains and γ - transverse shear.

Up to here all results are the exact ones. They are valid for shells made from
arbitrary materials. Note that all physical properties of a shell are contained in
the specific deformation energy. The above described theory of shell is called the
Reissner-type theory.

2.6 Special cases

Let us briefly discuss the popular versions of the shell theory.
Love-type theory. This is the most popular case in the applied mechanics.

In such a case the deformation of the transversal shear is supposed to be zero

γ ≡ (E + a) · n = ∇R · D3 = rα(Rα · D3) = 0 ⇒ D3 = N,

where N is the unit normal to the deformed reference surface. Besides, the equal-
ities (2) and D3 = P · n were used. The inertia tensors (4) and the deformation
tensors must be replaced by

ρΘ2 =
ρ

ρ0
〈ρ̃0z

2〉A, ρΘT
1 = −

ρ

ρ0
〈ρ̃0z

2〉C, C = − A × N
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and

E =
1
2

[
(E + a) · a · (E + a)T − a

]
, Φ = −∇R ·B ·C ·∇RT +b · c · (1+E) (9)

respectively.
Moment-free (membrane) shell theory. This case follows from the Love-

type theory when the specific deformation energy depends on tensor E only. We
have

Te =

√
A

a

∂ρ0U

∂E
, Me = 0, Θ2 = Θ1 = 0 ⇒ T = TT , T · N = 0.

Soft shells. Soft shells are made from a material like textile. In addition to
the previous case we have to accept

a · ∂U

∂E
· a � 0 ∀a : |a| �= 0, a · n = 0.

Besides, some additional restrictions must be accepted. Soft shells are very im-
portant for applications and rather difficult for solving. As far as we know the
general theory of soft shell is absent in the literature.

2.7 Deformation Energy of Solid Shell

For a shell made from the solid material the deformations are relatively small
while the displacements and rotations can be relatively large. In such a case the
following quadratic approximation can be introduced

ρ0U = T0 ·· E + MT
0 ·· Φ + N0 · γ +

1
2
E ·· (4)C1 ·· E + E ·· (4)C2 ·· Φ+

1
2
Φ ·· (4)C3 ·· Φ +

1
2
γ · Γ · γ + γ · ((3)Γ1 ·· E + (3)Γ2 ·· Φ). (10)

Here
T0,M0,N0, (4)C1,(4) C2,(4) C3, (3)Γ1,(3) Γ2, Γ denote stiffness tensors of dif-

ferent rank. They express the effective elastic properties of the simple shell. The
differences between various classes of simple shells are connected with different
expressions of the stiffness tensors, the tensors of inertia and the two-dimensional
density. Approximations like (10) are very popular in the nonlinear theory of
elasticity. The stiffness tensors in (10) do not depend of the deformations. Thus
they may be found from the experiments with the linear shell theory.

2.8 Linearized Basic Equations

In the linear theory there are no differences between the actual and the reference
configurations. This is equivalent to the condition that the energetic and the true
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tensors of forces and moments are the same. The displacements and rotations
are supposed to be small. In such a case instead of (8) we have

E 
 ε ≡ 1
2
(e·a+a·eT ), Φ 
 k ≡ κ·a+

1
2
(e··c)b, γ = e·n = ∇u·n+c·ϕ, (11)

with
e = ∇u + a × ϕ, κ = ∇ϕ. (12)

The linearized equations of motion (2.2) take a form

∇ · T + ρF∗ = ρ(ü + ΘT
1 · ϕ̈), ∇ · M + Tx + ρL = ρ(Θ1 · ü + Θ2 · ϕ̈). (13)

The Cauchy–Green relations can be rewritten as

T · a +
1
2
(M ·· b)c =

∂ρU

∂ε
, T · n =

∂ρU

∂γ
, M =

∂ρU

∂k
.

Then from (10) we get

T · a +
1
2
(M ·· b)c = T0 + (4)C1 ·· ε+ (4)C2 ·· k + γ · (3)Γ1, (14)

T·n = N0+Γ ·γ+(3)Γ1 ··ε+(3)Γ2 ··k, MT = MT
0 +ε··(4)C2+(4)C3 ··k+γ·(3)Γ2.

3 Determination of the Elastic Stiffness Tensors

Now we have to realize the most complicated part of the direct approach to the
shell theory and to construct the stiffness tensors. The solution of the problem
was given by Zhilin (1982). It is clear that we have to use the properties of the
symmetry. For this we have to solve two problems. First one: the classical theory
of symmetry can not be used because it is valid for Euclidean tensors only. In the
shell theory the Noneuclidean tensors are used. Second one: the stiffness tensors
depend on the symmetry of the material of the shell, symmetry of the surface
shape at the point under consideration and symmetry of the intrinsic structure
of the shell. Below only the main idea of the approach will be given.

3.1 General Remarks and Restrictions

It is necessary to specified the quantities: T0, M0, N0, (4)C1, (4)C2, (4)C3, Γ,
3Γ1, 3Γ2. The following constraints are obvious: d··(4)C1 = (4)C1 · ·d, d··(4)C3 =
(4)C3··d, c··Γ = 0, c··(4)C1 = 0, c··(4)C2 = 0, (3)Γ··c = 0, T0··c = 0, where d is
an arbitrary tensor and c denotes an antisymmetric tensor (both of second rank).
In the Euclidean space R

3 we have only polar vectors. In the oriented Euclidean
space R

3
0 - polar and axial vectors. For the shell theory it is convenient to use the

representation R
3
0,n = R

2
0 ⊕ R

1
n. Here we have three orientations, but only two

of them are independent. We will use orientation of 3D-space and orientation on
the line spanned on the normal n. In the space R

3
0,n four types of tensors can be
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introduced: 1. polar tensors, which are independent from the orientation in R
3

and in the subspaces, 2. axial tensors, which change sign if the orientation in R
3

is changing, but not if the orientation changes in R
1, 3. n-oriented tensors, which

change sign if the orientation in R
1
n changes, but independent of the orientation

in R
3, and 4. axial n-oriented tensors, which change sign if the orientation in R

3 is
changing, and if the orientation changes in R

1. In the shell theory the next objects
are introduced. Polar tensors: ρ,U,W,u, u̇,E,T0,T, a, (4)C1, (4)C3, Γ, ρΘ2. Axial
tensors: ρΘ1,ϕ,ω,F,Φ,b · c,M0, (4)C2. The tensors b,B,γ,Q = T ·n, (3)Γ1,Q0

are n-oriented objects. Axial n-oriented tensors: c = −a × n, (3)Γ2.
Let Q be an orthogonal tensor. Let us introduce the orthogonal transforma-

tion of the tensor (p)S = Si1i2...ip gi1 ⊗ gi2 ⊗ . . .⊗ gip
, where gi is a basis in R

3.
We shall use the notation

⊗p
1 Q · (p)S ≡ Si1i2...ipQ · gi1 ⊗ Q · gi2 ⊗ . . . ⊗ Q · gip

,

(p)S ′ ≡ (n · Q · n)β(DetQ)α ⊗p
1 Q · (p)S,

where α = β = 0, if (p)S is polar; α = 1,β = 0, if (p)S is axial; α = 0,β = 1, if
(p)S is n-oriented; α = β = 1, if (p)S - is axial n-oriented. Note that Q · n = ±n.

The group of symmetry (GS) for a tensor (p)S is called a set of the orthogonal
solutions of the equation

(p)S ′ = (p)S,

where (p)S is given and Q must be found.
In what is followed we shall use the conventional relation

T = 〈μ−1 · σ〉, M = 〈μ−1 · σ · cz〉,
where σ is the the stress tensor of the classical theory of elasticity.

The relations

ρ0(u̇ + ΘT
1 · ϕ̇) = 〈ρ̃0u̇∗〉, ρ0(Θ1 · u̇ + ΘT

2 · ϕ̇) = 〈ρ̃0u̇∗ · cz〉
may be obtained in order to find the displacement and rotations in terms of the
vector u∗ of displacement of 3D-theory of elasticity.

The external force ρF∗ and moments ρ0L may be found as

ρ0F∗ = 〈ρ̃0F̃〉+μ+σ+
n +μ−σ−

n , ρ0L = n×〈ρ̃0F̃z〉+(h/2)n× (μ+σ+
n −μ−σ−

n),

where μ+(−) = 1 − (+)hH + (h2/4)G, σ
+(−)
n are the stress vectors on the upper

and lower face surfaces of the shell.

3.2 Local Symmetry Groups of Simple Shells

The local group of symmetry (LGS) is a set of the orthogonal solutions of the
following system

⊗4
1 Q · C1 = C1, (Det)Q ⊗4

1 Q · C2 = C2, ⊗4
1Q · C3 = C3, Q · Γ · QT = Γ,

(n · Q · n) ⊗3
1 Q · Γ1 = Γ1, (n · Q · n)(DetQ) ⊗3

1 Q · Γ2 = Γ2.
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If we know the stiffness tensors, then we are able to find LGS of the shell. However
it is much more important to solve the inverse task and to find the structure of
the stiffness tensors, if we know some elements of the shell symmetry. To this
end let us introduce Curie-Neumann’s Principle:

GS of the consequence contains GS of the reason.
The GS of the reason is the intersection of the next groups of symmetry: 1.

GS of the material at given point of the shell, 2. LGS of the surface and 3. LGS

of the intrinsic structure of the shell. For the surface LGS is determined as a set
of the orthogonal solutions of the system

Q · a · QT = a, (n · Q · n)Q · b · QT = b. (15)

It is easy to see that LGS of the surface in a general case contains only three
irreducible elements: 1, n⊗ n − e1 ⊗ e1 + e2 ⊗ e2, n⊗ n + e1 ⊗ e1 − e2 ⊗ e2, where
eα are eigenvectors of b. For the plates (b = 0) the LGS is much more rich. In a
general case the GS of a shell can not be richer than (15). That means that we
are not able to simplify the structure of the stiffness tensors without additional
assumptions. But up to here we do not use the fact that the shell has small
thickness.

3.3 Dimension Analysis

Let the material of a shell be isotropic. In such a case the stiffness tensors depend
on the following items: h(q) - thickness of the shell, E(q), ν(q) - isotropic elastic
properties, a, b - first and second metric tensors. Making use of standard analysis
of dimensions one may prove the next representations

C1 =
Eh

12(1 − ν2)
C∗

1(hb · c,ν), C2 =
Eh2

12(1 − ν2)
C∗

2(hb · c,ν),

C3 =
Eh3

12(1 − ν2)
C∗

3(hb · c,ν), Γ = GhΓ∗(hb · c,ν), G =
E

2(1 + ν)
. (16)

Here all quantities with a star depend on the dimensionless tensor which is small

‖hb · c‖2 = (hb · c) · ·(hb · c)T = h2/R2
1 + h2/R2

2 � 1.

Thus one can use the following representation

Cs =
Ehs

12(1 − ν2)

[
C(0)

s + C(1)
s · ·(hb · c) + (hb · c) · ·C(2)

s · ·(hb · c) + 0(h3)
]
,

Γ = Gh
[
Γ(0) + Γ(1) · ·(hb · c) + 0(h2)

]
, 0(hp) ≡ 0(‖hb · c‖P) (17)

with s = 1, 2, 3. In what follows we ignore the terms of an order 0(h2) with
respect to 1. Only in some situations it is necessary to take into account higher
order terms, e.g. for the positive definiteness of the deformation energy. Instead
of the tensors Ci and Γ we have to consider the tensors C

(p)
i and Γ(p). It seems
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that the representations for the stiffness tensors does not simplify our discussions.
But the C

(p)
i did not depend on the geometrical shape of the surface. In this

case the group of symmetry of the tensors C
(p)
i does not include the GS of the

second metric tensor b.

3.4 Homogeneous thin shells

Let us assume that the shell is made from transversally isotropic material. If n is
the axis of isotropy, and the structure of the shell is of such kind that for b → 0
we have instead of the shell a plate with a reference (middle) surface which is a
surface of symmetry. In this case the tensors C

(k)
i , Γ(k) (not the tensors Ci, Γ

contains the following elements of symmetry

Q = ±n ⊗ n + q, q · qT = a, q · n = n · q = 0. (18)

In such a case it is easy to show that

C
(1)
1 = 0, C

(0)
2 = 0, C

(2)
2 = 0, C

(1)
3 = 0, Γ(1) = 0 (19)

We see that tensors C1, C3 and Γ with an error of 0(h2) can be found from the
plate tests. Tensor C2 may be found only from the shell tests. Let the tensor
(18) belongs to GS of tensors C

(k)
i , Γ(k). That means that these tensors must

be transversally isotropic. It is not difficult to find such tensors and after that
we get

C(1) =
Eh

1 − ν2

[
A1a ⊗ a + A2(r

α ⊗ rβ ⊗ rα ⊗ rβ + rα ⊗ a ⊗ rα − a ⊗ a)
]
,

C(2) =
Eh2

12(1 − ν2)

[
B1hH a ⊗ c + B2hH(rα ⊗ c ⊗ rα + cαβrα ⊗ a ⊗ rβ) +

+ B3a ⊗ (hb · c − hHc) + B4h(b · c − Hc) ⊗ a + B5h(b − Ha) ⊗ c] ,

C(3) =
Eh3

12(1 − ν2)

[
C1c ⊗ c + C2(r

α ⊗ rβ ⊗ rα ⊗ rβ + rα ⊗ a ⊗ rα − a ⊗ a)+

+h2H2
1C4a ⊗ a

]
, Γ = GhΓ0a (20)

with 2H1 = −(1/R1) + (1/R2). All results are valid for non-polar material and
have an error 0(h2). The modulus A1,A2,C1,C2,C4, Γ0,B1, . . . , B5 depends only
on the Poisson’s ratio.

Making use of the solutions of some test problems one can obtain the following
elastic modulus

A1 = C1 =
1 + ν

2
, A2 = C2 =

1 − ν

2
, Γ0 =

π2

12
, C4 =

1 − ν

24
, (21)

B1 =
ν(1 + ν)

2(1 − ν)
, B2 = 0, B3 =

1 + ν

2
, B4 = −

1 − ν

4
, B5 = −

1
2
. (22)
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All modulus in (21) and (22), excluding C4, were found from the tasks in which
they determine the main terms of asymptotic expansions. Modulus C4 is needed
for the deformation energy to be positively defined. Some comments must be
made with respect to the coefficient of transverse shear Γ0. It may be shown that
the inequality π2/12 � Γ0 < 1 must be valid always. If we are not interested in
the high frequencies, then it would be better to accept Γ0 = 5/(6 − ν). In such
a case the low frequencies can be found more exactly.

The tensors T0, M0, Q0 are defined by the expressions

T0 =
νh

2(1 − ν)
a
[
n · (σ+

n − σ−
n)

]
, M0 =

νh2

12(1 − ν)
c
[
n · (σ+

n − σ−
n)

]
,

Q0 = h(1 − Γ0)a
[
n · (σ+

n − σ−
n)

]
. (23)

Note that the representations (20) are valid for many cases of the nonhomo-
geneous shell.

3.5 Simplest shell theory

In a general case the theory given above can not be simplified. If someone make it,
then there exists the task in which the mistake will be present in the main term.
However there are many practical problems when it is possible to use much more
simple theory. The most popular theory of such a kind was given by L. Balabuh
(1946) and V. Novozhilov (1946). Practically the same theory was given by
W. Koiter (1959) and J. Sanders (1959). It was shown by K. Chernyh (1964)
that the Koiter-Sanders theory differs from the Balabuch-Novozhilov theory in
small terms. Let us note that there exist problems for arbitrary thin shell when
the Balabuch-Novozhilov-Koiter-Sanders theory gives the mistakes in the main
terms. Thus in general this theory can not be named the first-approximation
theory. Shell theory may be called simplest if it is described by means of minimal
number of the elastic modulus. However the deformation energy in the simplest
theory must be positively defined for any type of deformations. In such a case
we have to ignore the tensors T0, M0 and Q0. Besides, we have to accept Γ0 →∞ ⇒ γ = 0 and B1 = B2 = B3 = B4 = B5 = C4 = 0. From the restriction that
the deformation energy must be positive, we obtain A1 > 0,A2 > 0, C1 > 0,
C2 > 0, Γ0 > 0. The deformation energy takes a form

ρ0U =
Gh

2

[
2E··E +

2ν

1 − ν
(trE)2

]
+

+
Gh3

24

[
1
2
(Φ + ΦT ) · ·(Φ + ΦT ) − (trΦ)2 +

1 + ν

1 − ν
(c · ·Φ)2

]
, (24)

where tensors E and Φ are defined by expressions (9). The deformation energy
(24) may be used for small deformation and large rotations. For small rotations
one can use linear shell theory. The vector of small rotation ϕ may be found in
terms of the displacement vector

Γ0 → ∞, |T · n| < ∞ ⇒ γ = 0, ⇒ a · ϕ = c · (∇w + b · u) ,
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where w = u · n. The Cauchy–Green relations (14) takes a form

T · a +
1
2
(M ·· b)c =

Eh

1 − ν2
[(1 − ν)ε+ ν(trε)a] ,

M =
Gh3

12

[
k + kT − (tr k)a −

1 + ν

1 − ν
(c · ·k)c

]
.

The vector T · n of the transverse force is defined by the equations of motion.

4 Conclusion

It was above shown that the direct approach to the shell theory is based on some
new ideas of physical nature. As a result, this approach allows to build up the
shell theory which can not be improved without introduction of new dynamics
quantities like moments of higher orders. It is important that the theory does
not need any hypothesis and may be applied for all possible cases. Of course, the
elastic modulus must be found for these cases by means of special considerations.
For example, the elastic modulus of the three-layers shells may be found from
some transcendental equations which do not contain any small parameters and
therefore can not be solved by means of asymptotic methods. The elastic modulus
may be found for case when the friction between layers is present. In such a case
the constitutive equations must be slightly modified.

Acknowledgment. This work was partly supported by RFBR grant No. 02-
01-00514.

References

Altenbach, H. (1988), ‘Eine direkt formulierte lineare Theorie für viskoelastische Plat-
ten und Schalen’, Ingenieur-Archiv 58(3), 215 – 228.

Altenbach, H. and Zhilin, P. (1988), ‘A general theory of elastic simple shells (in Russ.)’,
Uspekhi Mekhaniki 11(4), 107 – 148.

Balabuch, L.I. (1946), ‘Bending and twisting of conical shells (in Russ.)’, Trudy Tsen-
tralnogo hydroaerodynamicheskogo instituta 577.

Chernyh, K.F. (1964), Linear Theory of Shell, Part II, LGU Publishing, Leningrad.
Koiter, W.T. (1960), ‘A consistent first approximation in the general theory of thin

elatic shells’, Proc. IUTAM Symp. on the theory of thin elastic shells (Delft, 1959),
North-Holland, Amsterdam, 12 – 33.

Lurie, A.I. (1990), Nonlinear Theory of Elasticity, North-Holland, Amsterdam.
Novozilov, V.V. (1946), ‘New method of the shell analysis (in Russ.)’, Izvestia of AN

USSR, OTN (1), 35 – 48.
Nye, J. (1992), Physical Properties of Crystals, Oxford Science Publications, Oxford.
Sanders, J.L. (1959), ‘An improved first-approximation theory for thin shells’, NASA

Tech. Report R-24, 1 – 11.
Zhilin, P.A. (1976), ‘Mechanics of deformable directed surfaces’, Int. J. Solids Struct.

12, 635 – 648.
Zhilin, P.A. (1982), ‘Basic equations of the non-classical shell theory (in Russ.)’, Trudy

Leningradskogo Politekhnicheskogo instituta (386), 29 – 46.


