
Dynamic Forms of Equilibrium of a Bar
Compressed by a Dead Force

Pavel A. Zhilin
St.-Petersburg State Technical University

Institute of Problems of Mechanical Engineering
Russia, 199178, St. Petersburg, V.O., Bolshoj pr., 61

Abstract

The report presents the stationary solutions of nonlin-
ear equations of motion of a console beam compressed
by a dead force.

1 Introduction

The equilibrium configurations of a thin rod com-
pressed by a dead force were found by Euler in 1744.
It was a first investigation of nonlinear problem in me-
chanics. Up to now exact solutions of dynamic nonlin-
ear equations for a console beam were not found, since,
as a general rule, the nonlinear equations with particu-
lar derivatives does not allow the separation of variables
by means of finite number of operations. However there
are some special cases when it is possible. One such a
case will be described in what follow.

2 The Statement of the Problem

Let us consider the thin flexible beam clamped on one
end and compressed by a dead force on another end.
The cross-section of a bar is supposed to be transversely
isotropic. The classic equation can be represented in
the form of the next system of equations.

The equations of motion

N ′(s, t) = gR̈(s, t),

M ′(s, t) + R′(s, t)×N(s, t) = 0,
(1)

where f ′ = ∂f/∂s, ḟ = ∂f/∂t; s is a coordinate of
a cross-section of a bar in undeformed state; the vec-
tor R(s, t) determines the position of a cross-section
in deformed state; ρ is the mass of the bar per unit
length; ρ = const; N(s, t) is the vector of intrinsic
force; M(s, t) is the vector of intrinsic moments.

The geometrical relations expresses the condition of in-
extensibility of the bar axis

R′(s, t) = P (s, t)·τ , τ ·τ = 1, R′ ·R′ = 1, (2)

where τ is an unit vector directed along undeformed
axis of a bar; R′ is a tangential vector to the deformed
axis of a bar; the properly orthogonal tensor P (s, t)
describes the turn of a cross-section with a coordinate s.

PT (s, t)·P ′(s, t) = E, det P (s, t) = 1 (3)

The constitutive equation has a form

M(s, t) = C1Φ(s, t) + (C3 − C1)(R′ ·Φ)R′, (4)

where C1 is the bending stiffness; C3 is the torsional
stiffness; Φ is the vector of bending-torsion.

The vector of bending-torsion Φ(s, t) and the vector of
angular velocity ω(s, t) can be found from equations by
Poisson [1].

Ṗ (s, t) = ω(s, t)×P (s, t),

P ′(s, t) = Φ(s, t)×P (s, t)
(5)

From the equations (5) the next equation can be de-
rived

Φ̇(s, t) = ω′(s, t) + ω(s, t)×Φ(s, t) (6)

Thus we have a closed system of equations for unknown
functions R(s, t), N(s, t) and P (s, t). If the tensor of
turn P (s, t) is known then the vector of position R(s, t)
can be found by means of integration of equation (2).
So the basic unknowns are the vector N(s, t) and the
tensor P (s, t).

However for this we have to transform the first equation
from system (1). Differentiating the equation (1) with
respect to the coordinate s and making use of (2) and
(5) we obtain

N ′′ = ρR̈
′
(s, t) = ρ[ω̇×E + ω×E×ω]·P ·τ (7)

Also we have an additional boundary condition which
follows from (1)

N ′(0, t) = 0 (8)

Let us formulate boundary conditions

s = 0 : R(0, t) = 0, P (0, t) = E; (9)



s = l : N(l, t) = −Qτ, M(l, t) = 0, (10)

where E is an unit tensor of second rank. When Q > 0
we have a bar compressed by a constant force Q.

The initial conditions have a standard form

R(s, 0) = f(s), Ṙ(s, 0) = v(s) (11)

In what follows we accept the strong restrictions on the
functions f(s) and v(s).

3 Alternative Statement of the Problem

Sometimes it is more convenient to use the alternative
statement of the problem in terms of right quantities
[1]. Let us introduce into consideration the right vec-
tor of bending-torsion φ(s, t) and the right vector of
angular velocity Ω(s, t)

Φ = P ·φ, ω = P ·Ω ⇒ Ṗ = P×Ω, P ′ = P×φ (12)

The equation (6) takes a form

φ̇ = Ω′ − Ω×φ (13)

Let us introduce the new variables

N = P ·n, M = P ·m (14)

In order to transform the equation of motion (1) we
have to differentiate the first equation from (1) with
respect to the coordinate s and to use the equation (2).

Now the equations of motion (1) and (7) take the form

(n′ + φ×n)′ + φ×(n′×φ×n) = ρ[Ω̇×τ + Ω×(Ω×τ)], (15)

m′ + φ×m + τ×n = 0 (16)

When deriving the equations (15)− (16) the next iden-
tity is useful

P ·(a×b) = (P ·a)×(P ·b),
∀a, b, P : P ·PT=E, detP =1

The constitutive equation (4) can be rewritten in terms
of new variables as

m = C1φ + (C3 − C1)(φ·τ)τ (17)

The boundary conditions for system (12) − (17) have
the form

s = 0 : n′ + φ×n = 0, P (0, t) = E

s = l : n = −QPT ·τ , m(0, t) = 0
(18)

In such a statement the basic system does not contain
a tensor of turn and a vector of position.

4 Integral by Poisson

From the equations (2) and (5) it follows

R′′ = Φ×R′ =⇒ Φ = (Φ·R′)R′ + R′×R′′ (19)

The second equation in (19) expresses the represen-
tation by Poisson (1833) for the vector of bending-
torsion. Substituting (19) into (4) we have

M = C1R
′×R′′ + C3(R′ ·Φ)R′ (20)

From this equation it follows

M ·R′′ = 0, M ·R′ = C3Φ·R′ (21)

The second equation from (1) shows that

M ′ ·R′ = (M ·R′)′ − M ·R′′ = 0

This equation and the equations (21) give to us

M ·R′ = C3R
′ ·Φ = A(t) = const(s) (22)

The integral (22) was derived by Poisson [2,p.627]. The
conditions (10) shows that the function A(t) is equal
to zero. Thus we have

M = C1u×u′, Φ = u×u′, u(s, t) ≡ R′(s, t) (23)

Making use of (23) the second equation from (1) can
be rewritten in the form

u×[C1u
′′ + N ] = 0

or in equivalent form

C1u
′′ + N = λ(s, t)u ⇒ λ = N ·u − C1|u′|2 (24)

For the vector N the next expression can be found
from (7)

N = −Qτ − ρ(l − s)

l∫
0

ü(ξ, t)dξ + ρ

l∫
s

(ξ − s)ü(ξ, t)dξ

(25)
Now the equation (24) can be rewritten in the form

C1R
IV − (λR′)′ + ρR̈ = 0, (26)

where λ is given by second expression in (24) and the
expression (25) must be replaced by

N(s, t) = Qτ − ρ

l∫
s

R̈(ξ, t)dξ

The boundary conditions for the equation (26) have the
form

s = 0 : R = 0, R′ = τ ;

s = l : R′′ = 0, C1R
′′′ − λR′ = Qτ

(27)



The problem (26) − (27) is very complicate in a gen-
eral case for an exact analytical solution. Only static
solution of this problem is well known. The problem
(26) − (27) can be rewritten in terms of vector u = R′

C1u
V I − (λu)′′ + ρü = 0, (28)

s = 0 : u = τ , C1u
′′′ − (λu)′

∣∣∣
s=0

= 0;

s = l : u′ = 0, C1u
′′ − λu = Qτ

(29)

5 Stationary Movements of the Bar

Let us consider the special kind of the movement which
can be defined by tensor of turn

P = Q(ψτ)·Q(ϑe0)·QT (ψτ) = Q(ϑe),

e = Q(ψτ)·e0,
(30)

where ϑ(s) is an angle of nutation and it does not de-
pend on time; ψ(t) is an angle of precession and it does
not depend on space coordinate; φ(t) = −ψ(t) is an
angle of own rotation.

Also we accept the relations

ψ̇(t) = ω = const, ψ(0) = 0

e(t)·τ = 0, e(0) = e0

(31)

The vector ϑ(s)e(t) is the vector of turn. The left ω
and the right Ω angular velocities can be found from
the expressions [1]

ω = ω[(1 − cos ϑ)τ + sin ϑτ×e], ω ≡ ψ̇; (32)

Ω = ω[−(1 − cos ϑ)τ + sin ϑτ×e] (33)

The left Φ and the right φ vectors of bending-torsion
are defined by formulae

Φ = φ = ϑ′(s)e(t) (34)

The next representations are valid

u(s, t) = R′(s, t) = cos ϑτ − sinϑτ×e(t),

ü(s, t) = ω2 sinϑτ×e
(35)

Making use of (35) the expression (25) can be rewritten
in the form

N = −Qτ − T (s)τ×e,

T (s) = ρω2[(l − s)

l∫
0

sin ϑ(ξ)dξ −
l∫

s

(ξ − s) sin ϑ(ξ)dξ]

(36)

The function λ(s, t) in such a case has the form

λ(s) = − cos ϑQ + sinϑT (s) − C1v
′2, (37)

i.e. the function λ does not depend on time. Let us
introduce the vector of displacement

R = sτ + w = (s + u)τ + wτ×e

Making use of (35) we have

x ≡ u·τ = R′ ·τ = 1 + u′ = cos ϑ,

y ≡ u·(τ×e) = R′ ·(τ×e) = w′ = − sin ϑ
(38)

If we take into account the relations (35) and (38) then
the system (28)− (29) can be rewritten in such a man-
ner

C1x
′′ − λx = Q, (39)

s = 0 : x = 1; s = l : x′ = 0

C1y
IV − (λy)′′ − ρω2y = 0, (40)

s = 0 : y = 0, C1y
′′′ − (λy)′s=0 = 0

s = l : y′ = 0, C1y
′′ − λy = 0

The problems (39)− (40) are connected since the func-
tion λ depends on functions x and y. May be it would
be easy to consider another approach.

The equations (7), (23), (35) and (36) give us

N ′′ = ρü ⇒
⇒ T ′′(s) = −ρω2 sin ϑ = ρω2w′ ⇒

⇒ T ′(s) = ρω2w(s)

(41)

For the bending moment we have an expression

M = C1ϑ
′(s)e(t)

Let us calculate the vector product

R′×N = (Q sin ϑ + T cos ϑ)e(t)

Now the second equation from the system (1) takes the
form

C1ϑ
′′ + Q sin ϑ + T cos ϑ = 0 (42)

From the equations (41) and (42) it follows

C1

[
1√

1−w′2

(
w′′√
1−w′2

)′]′
+Q

(
w′√

1−w′2

)′
−ρω2w = 0

(43)
Boundary conditions to this equation have the form

s = 0 : w = 0, w′ = 0;

s = l : w′′, C1

(
w′′√

1 − w′2

)′
+ Qw′ = 0

(44)



Thus we obtain nonlinear spectral problem. For any ω2

we have a trivial solution w = 0. The rigorous existence
proof of nonlinear solutions for the problem (43)− (44)
is not known. Let us suppose that this problem has a
real solution w(s). In such a case it is not difficult to
obtain the formula

ρω2

l∫
0

w2ds = C1

l∫
0

w′′2ds

(1 − w′2)
− Q

l∫
0

w′2ds√
1 − w′2

(45)

The spectral problem (43) − (44) is not usual one be-

cause of nonlinearity and the presence of two parame-
ters Q and ρω2. Let us remind that the parameter ω
has a meaning of the velocity of precession.

6 An Asymptotic Solution of the Basic
Problem

Let us introduce the new variables

s = lξ, 0 ≤ ξ ≤ 1; q = Ql2/C1; λ2 = ρω2l4/C1;

w(s) = μlv(ξ), μ = max
s=[0,l]

∣∣∣∣w(s)
l

∣∣∣∣ ,

|v(ξ)| ≤ 1, μ � 1

In such a case the problem (43) − (44) takes the form[
1√

1−µ2v′2

(
v′′√

1−µ2v′2

)′]′
+ q

(
v′√

1−µ2v′2

)′
− λ2v = 0,

f ′ = df/dξ
(46)

ξ = 0 : v = 0, v′ = 0,

ξ = 1 : v′′ = 0,

(
v′′√

1−µ2v′2

)′
+ qv′ = 0

(47)

Let us look for the solution of the problem (46) − (47)
in the form of asymptotic series

v =
∞∑

k=0

μ2kvk(ξ), λ2 =
∞∑

k=0

μ2kλk (48)

Since we look for a solution on the finite interval then
we can use the simplest form of asymptotics. Substi-
tuting (48) into the equations (46)−(47) we obtain the
system for definition of functions vk(ξ). For the func-
tion v0(ξ) we have a problem

vIV
0 + qv′′

0 − λv0 = 0, (49)

ξ = 0 : v0 = v′
0 = 0;

ξ = 1 : v′′
0 = 0, v′′′

0 + qv′
0 = 0

(50)

It is not difficult to prove that all eigenvalues of the
problem (49)− (50) are real numbers. For the problem
(46) − (47) we are not able to prove such a fact. We
have to remember that only nonnegative eigenvalues of
the problem (49) − (50) have a physical sense.

7 Conclusions

The nontrivial solutions of the problem (46)− (47) can
be named the dynamic forms of equilibrium of the bar
compressed by a dead force. The usual forms of equi-
librium correspond to the eigenvalue λ2 = 0, whereas
the dynamic forms correspond to the case λ2 �= 0. The
eigenvalues λ2 �= 0 determine the angular velocities of
rotation of the bar.
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