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ABSTRACT - The paper develops a simple, yet complete and consistent non-
linear dynamic thermc-elastic shell theory based on the concepts of a
two-dimensional directed continuum. The constitutive equations are
postulated in a general form. Stress-strain relations are derived using
the equaticon of energy balance and the two entropy production inequali-
ties, which are rewritten in a special form. The linear theory is
discussed in detail. The structure of the stress-~strain relations is
presented i1n the most general form and then specialized to concrete
examples, in particular, to the classical shell theory, using their in-
variance properties with respective to certain symmetry groups. The
elastic moduli are determined by demanding the coincidence of the fre-
quency dispersion surfaces obtained using the two-dimensional theory
with the lowest foils of the corresponding surfaces resulting from the
three-dimensional theory of elasticity.

1. INTRODUCTICN

A5 a general rule, when speaking of the foundations of shell
theory we think of the following problems: a rational
derivation of the basic equations of two-dimensional shell
theory from the eguations of three-dimensional theory of
elasticity; a formulation of the boundary conditions;:; an
estimate of the accuracy of the equations so derived.

In so doing it is implicitly (and sometimes even ex-
plicitly) understoed that the shell theory should be an a-
symptotically exact result of the theory of elasticity.

However, difficulties already arise in defining a
shell. The intuitive definition of a shell - that of a body
ane dimension of which is very much smaller than the other
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two - is obviously inadequate. In fact, it is also necessary
to restrict the class of permissible external lcads (Niord-
son, 1971). Morecover, the requirement that the shell thick-
ness be small is sometimes also superfluous. For example,
the problem of pure bending of a strip is described equally
well by both the three-dimensional elasticity theory and the
two-dimensional shell theory, regardless of the thickness of
the strip. Besides, when seen from a distance, many engineer-
ing structures look like shells and can, in fact, be
censidered as such, although it is impossible to define a
thickness in such cases. It may also be remarked that the
definition of a shell is not the main problem in the shell
theory, but rather, the simplest of the remaining problems
in shell theory.,

For these reasons, in the past decade or sc, there
has probably been a revived interest in the construction of
a shell theory through a direct approach based on the
concept of directed deformable surfaces., The theory of such
surfaces contains all the basic elements inherent in the
shell theory, yet it does not coincide with the latter. Like
the shell thecry, the theory of directed deformable surfaces
is based on the concepts of forces, couples, displacements
and rotations that are specified on a two-dimensional mani-
told. However, in contradistinction to the shell theory,
these concepts are introduced o priori into the theory of
directed surfaces which makes it possible to avecid the
contradictions inherent in the shell theory. This is un-
doubtedly a great merit of the thecory of directed surfaces,
provided, however, that it is able to cover a lot of the
preblems considered in the shell theory. The limits of
validity of the theory of directed surfaces are as vet es—
sentially unknown. To answer this guestion it will be
necessary to solve the same problems as arise in construct-
ing a shell thecry. However, the construction of a theory
and the determination of the range of its applicability
differ significantly from each other. Whereas the question

regarding the construction of the theory proper can and must

be answered mxmnﬁwwﬁ the same cannct be said of the latter
question. The major stumbling block in the classical shell
theory is probably that these two problems are mixed,

The use of a direct approach to constructing a theory
of bars and shells can be traced back to Euler. Later, Diihem
introduced the idea of directed spaces that was subsequently
developed by E. and F. Cosserat. However, further develop-
ment of the shell theory took a different path. It was only
much iater that a paper by Ericksen & Truesdell (1958},
dedicated to the memory of the Cosserat brothers, again
directed the attention of workers towards seeking a direct
approach to the construction of a shell theory. Beginning in
1965, Green & Naghdi published a number of papers devoted to
this subject. These authors develcped a general non-iso-
thermal theory of directed surfaces and pointed out one of
the many ways of interpreting the quantities that are
introduced a priori into such a theory, and thus illuminated
a path leading from the theory of directed surfaces to a
theory of shells (Green & Naghdi, 1967). A somewhat different
approach to this problem has been presented by Reissner
(1967) , who, however, considers it in a more restricted
formulation that is very close to the linear theory of
elastic shells.

The essence of the present work is very close to the
works by Green and others. However, it differs from the lat-
ter, not only in purely technical details, but also as fol-
lows. Firstly, in the choice of the directors as a triad of
vectors and not as a single vector. Such a choice of a
director is necessary for describing shells made of polymers,
as well as stiffened shells. To this end, the present work
gives a general description of the kinematics (§ 1) and the
dynamics (§ 2} of a surface with such a director. Secondly,
in the formulation of the second law of thermodynamics as
two inequalities of Clausius - Dilhem type (§ 3). This makes it
possible to include the temperature dropalong the shell thick-
ness. Thus, section 4 presents the constitutive egquations



and stress-strain—-temperature relations for the non-iscther-

mal theory of a directed surface.

Thirdly, in the formulation of the constitutive equa=~
tions for linear coupled thermo-elasticity and in the deter-

mination ¢of their structure. In doing so0, we follow ar-

guments similar to those of Niordsen (1971) and Serbkin (1963} .

Lastly, in the determination of the elastic moduli. In this
connection, it is worth peointing out that we do not use the
conventional interpretation of the displacements, forces and
couples in a shell as being some average of the corresponding
quantities in a three-dimensional continoum., Specifically, we
utilize the implicit averaging properties of frequencies of
natural vibration, which, in contradistinction to displace-
ments, rotations, forces and couples, are characteristics of

the mechanical system as such and not of its deformed state.

2. KINEMATICS OF A DIRECTED SURFACE

Let us consider formally a directed surface ..m:n defined as

follows. Let there be given a material surface, called in the
sequel, a carrying surface, This can be defined by a vector

. 1 2 _ *
function Ri(x ,x",t) = R{x,t) , where xﬁ : dre material

coordinates upon the surfare and t 1is the time. Alsc, let
there be given at each point of the carrying surface a triad

ef leocal vectors mwhx,wu r obeying the conditions

(2.1) D, « D = §

The vectors D, are generally independent of the geometry
of the carrying surface and will be called a director.

The carrying surface with such a director will be called a

directed surface, denocted by S, . Thus,

v a directed surface

*)

In general, in the following, latin Indice.,

, L:ke the values 1,2
and greek indices the values i,2 .

at the moment t is defined if a distribution of 3-frames
{R(x,t), D (x,t)} in a 3-dimensional space is known. Such
a definition of a directed surface is not intrinsic. Thus, it

is advisable to define mﬂ in another way. To this end,

let us consider two wvector fields mﬂﬁﬂﬁwv and MEAE.HV

with tensor compeonents and define {R, D, .} as a solution of
the set of differential eguations

*)

_ _ . o
(2.2} o,R =R, , 3D =K xD, 3, = 8/3X

It is clear that mﬁ and K cannot be arbitrary and must

obey Cartan's equation of structure

(2.3) oRg = 3zRy + B Ky = 3K - K, X K =0

These equations follow from the integrability conditions im-

posed on (2.2). For future use we introduce analogous condi-

tions
(2.4) wﬂm = Amﬁmu ’ wnmr = nmﬁuwv , £ = df/4dt
for representing R and K
— —{
_H.M-mw m.u. = mﬁum : ..mm.nn = mnn..—..”wl + ..m.m, x m_u_. J

vV being the linear velocity of the apex of 3-frame and &

the angular velocity of the frame about its apex, viz,

(2.6) R=Vix,t} , D =41 xD .
It can be shown that a directed surface is defined to

within a rigid body motion in space if three sets of func-
tions

*)

The cross-product is defined in the natural basis of the carrying sur-
face in the standard way.
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LR« - K - < -R - (2.11) 3%, - 3.0 -¢ x b =0
(2.7) Ry, =Byt Dy Ky = Kt Dy Bog = <Ry 3N ate ~ 5t T 2o 2
(N being a unit normal to the carrying surface) are known. Furthermore, we can establish that
Cf course, these functions must satisfy the eguations which
follow from (2.3} and the Codazzi equation for mﬁm . (2.12) m& = mmm oMo mn
Let us introduce three ﬁmsmﬂﬁmiu |
The vectors %, Preserve the advantages of K, because
(2.B) R = mnﬁmﬂ & Ms , K = mmsmﬁ Q mz , B = mﬁmmm & mm they vanish under rigid body motions of 5, . Hence, it is
possible to linearize (2.11) and (2.12), which cannot, in
% . g = &% general, be said of (2.3) and (2.5). In order to determine the
— —B 3

ocrientation of the carrying surface let us introduce a tensor

which will be called first, second and third fundamental

3 N 5
tensors of a directed surface, respectively. The tensors (2.13) E{x,t) = Hﬁmﬁ X mmu - m_m ® R
R and B are known in the classical theory of surfaces,
but K is introduced by the director. As a general rule, This tensor is independent of the choice of direction of the
tensor B is absent in the physical theories, as will be- normal N . Indeed, if N*-N , then ME g mm+1mm 8 mm and
come clear in subsequent sections. But it is present, for E+ E . In concluding this section let us demonstrate a
example, in Kirchoff's theory of shells. method of obtaining theory of shells. For this purpcse it is
Now we introduce new vectors ¢  in place of K as sufficient to choose the director as
* *
follows )
{2.14) D, = =
) =358 0 Ryay T B
(2.9) K =¢ + 4 + k , A(x,t) =D {x,t) @ 4 (x) , |
—Q —Q = —a° = —k — . . . . .
mﬁﬁu. being the principal directions upon the carrying sur-
. . . *
A is an orthogonal tensor or a tensor of rotation. It can face. For such a director there exist the relations' )
be shown that mﬁﬁx.ﬁw is defined by A and vice versa T
tx1 = (Grad V)" - Grad V , Grad V = mn ® d.V
(2.10) mﬁ.wﬁuﬁ-ﬁv = mﬁ_“u_nuﬁ”_ v W_.Munnﬁu , .H.N;“_rwu
. Kix,t) = -Bi(x,t) - E(x,t)
provided that A(x,o0) =1 .
The vectors ¢ _ must satisfy the equations of struc- In this case we have only three degrees of freedom for
Iﬂ_ - x
ture, which follow from (2.3) every point of a directed surface.

*
) Einstein's summation convention is adopted.
*E

Here and in the sequel lower case letters stand for the correspon-

*x
Jding functions at the moment t = 0 . For example, mﬁﬁxu = }

mﬁnﬁx.ﬁuﬁﬂo ) Superscript T indicates transpose.



3. STATICS AND DYNAMICS OF A DIRECTED SURFACE

It is not difficult to show that the state of "stress" in a
deformed directed surface is specified by two unsymmetrical

tensors T and M called the force tensor and the couple

[

tensor, respectively, where

(3.1) T=R ®T =1"R 6D ,M=R &M =m"R @D

with

[ S —

o
(3.2) 7% < \mﬁnmﬁﬁu . mp _ xmﬁﬁmﬁpu ‘ RO mp , mg

The vectors and

Hﬂﬁv mﬁﬁg are, respectively, the physical

vectors of the force and of the couple acting on the coordi-

L
nate curves X = const.

It is readily seen that Cauchy's theorem remains valid

3.3 = . - .
ﬁ ) v I, Eﬁau v M,

T

— (v}
where v is a unit normal vector directed cutwards from a
curve C on the carrying surface and satisfying the condi-

tion v * N = 0 . Moreover, the tensors T and M must

—— ! .. ——
[T =

satisfy the equations of mation
(4.3) Div T + pF = oV DivM + R x T" + pL = pg - @

where Divy 5 = mﬁ » g S .

O
The quantities pF, pL,p,pf are called the surface
torce, the surface couple, the surface mass density and the

surface tensor of rotary inertia (p@ = ﬁwew , respectively.

4. EQUATION OF ENERGY BALANCE AND ENTROPY PRODUCTION
INEQUALITIES

Let us postulate two laws of thermodynamics for the directed

m;Hmmnm mn .memHHmﬁHmioﬂﬁ:mmﬂ:meDﬂﬂwm:mﬂmwwmwm:nm

can be written as

|
_—
L.
N
| <
| <
+
M

2+6.0+014dZ = %nﬂa+m.¢+r.mumm +

(4.1)

where U is the internal energy density, pg- the heat

supply density and h the heat influx across C ,

(v)
It is readily seen that {(4.1) is an invariant with re-
spect to the group of rigid body motions if the tensors T

and M satisfy the equations (3.4} and the feollowing equat-

ion 0of mass conservation holds good

(d4.2) %W — pdZ = 0 + p/R = noxm ' Doﬁmu = pi{x,t)

t=0
Dmﬁ

For future use it is necessary to write down (4.1) in
the form of a local energy equation. Making use of the diver-

gence theorem

C mmﬁ

(S being an arbitrary tensor field upon the surface, H-

(4.3) % Vv o+ 5§ dec = % (Div § + ZH N . 8)dr ,

the mean curvature of the carrying surface), the last inte-

gral in (4.1) can be rewritten as

(4.4) Tm.m.mﬁ.m.muw.mﬁnu TE“.E T) +V+(Div M) +Q+pg +
C AS
T T L
+ T :Grad v+M :Grad £-Div h-2HN-h]ldI ,
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whence, by use of (3.4), (4.1) takes the necessary local form

{(4.5) nmuﬁe"mﬂm& M|ﬁmEanu.m+HeumHm& fi=Div h=-ZHN+h+pqg

However, the eguation is inconvenient to use because it 1s
expressed through terms which are not intrinsic for a di-
rected surface. It is, therefore, necessary to further
transform (4.5). In this connection, we make use of (2.6)

and obtain

- T =
T :Grad V - (R +T™)e@ = T,:R" = T,:¢
. an . :
Iy, =T £, ®d being an energetical force tensor,
X ¥ N . . :
R =R r ®d - the first deformation measure of the di-
rected surface and & = mx - ¥ - the first deformation tensor.
In an analogous manner, by making use of (2.5}, it is
readily shown that
M o:Grad 9 = My:kK* = M1:§ = mO%P§
= — —* = =% "= an

'S ¢! . .
M, - M Mm ® m: being an energetical couple tensar,
X -
K" -k, r @ m: - the second deformation measure of the di-
rected surface and ¢ = Wxiw - the second deformaticon tensor

= _HH HI._. = i
‘2 *anE ® 2 - Pan T 24°Bpt -

Now the eguation (4.5} takes the form
. T - T ¢ .

(d.8) pU0 = T,:eg + M :® + pg - Div h - 2H N-h ,

which must be satisfied by an arbitrary process.
It i1s useful to rewrite (4.6) as a set of two equations
by introducing an additional gquantity Q - the heat exchanged.
Let the directed surface 5 be situated in a heat

t

containing medium., We shall distinguish sides 1 and 2 of mw

according to the orientation of the normal N - the normal

being directed from side 2 towards side 1. Furthermore, let

us consider a point removed from the boundary region of mﬁ '

11

Usﬂwmwozﬂwzmﬁm -mﬁ itself and let q+ﬁx,ﬁv and T (x,t)

.Um, respectively, the temperature of the surrounding medium

from the upper and lower faces of mﬁ in the vincinity of

this point. Then the heat supply density pg can be repre-

sented as a sum of three terms pg = Pg,teg,+oeq, where
P9y 15 the heat production "inside" S, + PPy — the heat in-
put to side 1 from the medium with temperature T, (x,t) and

PGy - the heat input to side 2 from the medium with tempera-
ture T_(x,t) , and (4.6) can be rewritten mm*v

(4.7) o0, -T; :6-M

A LupE M0 = D.mnﬂm+nﬂb+mmbluwﬂ h,-2H N+h .,

- A

where subscript A is assigned to the side A of Sy -

The quantity @ = mw = |mm will be called the exchan-
ged heat, i.e. the heat exchanged between sides 1 and 2.
Let us postulate the Second law of thermodynamics in
the form of two inequalities of the Clausius-Dilhem type.
(4.8) %W % anmM - M mmmww + MW + Mwumw + % MW dec > 0 ,
Dmﬁ mmﬁ C
nmw being the surface entropy density of side 1. The second

inequality can be obtained by replacing subscripts 1 and

2 and exchanging T_ for T, - In what follows, consideratiocn

is given to (4.8), the other inequality being similar. The
total specific entropy of S, can be found as S = md+mM .
Making use of the divergence theorem, the inequality {(4.8B)

cah be written in the local form

: Ly =450 P17,
uerDﬂH T T uﬂHJWJﬂI.! &Imc.mnﬂo+uﬂH+DDHIdemHtmmm.m ]-
17+ 172 1
- ﬁlms «Grad T, > 0
l =1 1l — f
‘which, by use of (4.7}, takes the form
*) _
Tne latin indices A,B,... take the values 1,2, no summation being

intended.
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. -1 -1 -
Umwew @ﬂpﬁ+ Hewne+y uGHem hﬂwlemu - EGH +
{4.9)
+ HHH"W + EHH" W - HMH WH.mHmm %H > 0

Furthermore, by introducing Helmholtz free enerqgy per unit

mass
{4.10) A = U_ = 5_T

inequality (4.9} can be written as

- » T . T . —_ “__r
-p (A, +5.T ) + H*H.W + E*H.H - DQHH+ Hﬂuf%+u -

) - o lh wGrad T, > 0

-1
DQHHM ﬁﬁwiﬂ 1 =1 1 =

2
Equations (4.7) and the ineqguality (4.9) or {(4.11}) must be
satisfied by an arbitrary process. These will form the

foundations of the following.

2. NON-LINEAR THERMO-ELASTICITY OF A DIRECTED SURFACE.
CONSTITUTIVE EQUATIONS AND EQUATIONS OF HEAT TRANSFER

As a general rule, the equations of energy balance and the
cntropy praoduction inegualities play the role of compulsory
canstraints. However, in some specific cases they allow us

to obtain more interesting results. Non-linear thermo-elasti-

city is one such particular case and is considered below.

Let us treat the functiaons Wum,ﬂm » Grad Hm )

state variables. Let there be given constitutive equations

as the

for ?m~Wm_Dm.mm‘ma , which are functions of the state
variables.
The inequality (4.11) now take the form

3a ap 3A 32
1 _H_._-_ _ 1 qH,.....I 1 ot
se ‘L) cetttegy M) c-legps #8T

(-0 T -

S O
1 mﬂm 2

(5.1)
cont.

13
mww . mrw .
~F3Grad HH.QHW& HH - P3Grad Hm.mﬂm& Hm -
5.1
h u HH|H+ ewlem 1
Py T PO — - /& h.,*Grad T, > 0
1 H+ 1 Hm HH 1 1 —
It 1s clear that (5.1) is satisfied if, and only if,
) 3A 3A 3 A 3A
= im_ . — m . — m * m — =
_“:“.lu-m“_ H*m. _U m r .E*m = QO wﬁ. , mm.. - m..._w F m__..H. - _H___ _ﬂm_n_u.nv r
= - B C
mwm
Grad T - 2 ¢ —9y(Ty=T,) > 0 ; -Q(T-T,) > 0 ;
(5.3) -
|£mﬁﬂmlelu > 0 ; lmw.mﬂm& T, >0

Hence, the Helmholtz free energy bH 1s independent of the

variables T, , Grad T and A, - that <of the variables T

2 A 2 1°
Grad ew .

The relations (5.2) can be rewritten as

oA d A4 oA
mlb - — : =  — - -
(5-4) T, = p5z i Ma = 035 5 Sp = - g7
or
_”lﬂu.___mv .H- = _U_nelmww.-bﬂ_ﬂ - E —_ Dm_H_lm.—.ﬂr.l-ﬁf.H. - m_ — - {MF
— — ag = "' = - 3¢ = " "B aT d

where C = grad R+ n®N , grad = mﬂmm_ﬁ - and A is
specified by (2.9). Of course, we could treat the functions
E, ¢, mH.mm as the state variables. In this case the in-

)

equalities (5.3) would remain unchanged, but instead of
(5.5) we would have

(5.6) T oU _ T T 3 o whu .
B

I =r .wm.w ; M= pl -m%

-

Then, by making use of (5.2}, (4.10) and (4.7}, we obtain
the equations of heat transfer

(5.7) Div h, - 2HN<h, = 0, + _ :
22 Reh, °P9g t Pla,+q,) — oT,S,
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6. LINEARIZATION OF BASIC EQUATIONS (6.4) V(x,t) = u(x,t) , 9(x,t) = d(x,t)
The linear theory we shall discuss is such that MEﬁxﬁﬁu - It is not difficult to show that
r (x,t) and ¢, (x,t) , as well as their spatial and time
derivatives, are all infinitesimally small. In this case {6.5) A=1+¢ =1 mw =~ mw T ox MW
there is ne distinction between the true and energetical force
tenscrs. The same holds good for couple tensor. The asterisk w Furthermere, the second and the first deformation tensors
mark "*" is thus omitted in the sequel. v take the form
The equations of motion, expressed through the unde-
formed metric tensor, take the form (6.6) ¢ =2V® =k £=VO8U+rx pe,
ﬁm.wvﬂ.ﬂ+nm = uw - Q.H+Mﬁxea+nw = mm.w , ﬂumﬂm&mmwmﬁpnna K,¢ being the infinitesimal second and first tensors, re-
! spectively.
The first of the equations (2.3) can be written as For the sake of conciseness, thetensors e and k
will be called the strain tensor and the "bending" tensor,
mmﬁm -r,.}) = mmﬁmﬁiwﬂy . respectively, but we emphasize that the "bending” tensor £
can exist even though there is no bending in the real sense
Hence there exists a vector u , called the displacement of the word.
vector, such that In order to determine the vectors u and ¢ from
equations (6.6}, the tensors e and k must satisfy the
(6.2) mﬁ - r, = mﬁm integrability nmznwnwosm*u
Moreover, if ¢, are also infinitesimally small, (2.11) re- (6.7) Ve{mek) =0 , Ve(mre) + HM.MHR = 0 ,
duce to
where Hm.wux is the vector invariant of the tensor 7ex ,
dudg = 358, for example, T = (r & T) =1 x 1% |
We point out here the so-called statico-geometrical
'‘whence it follows that there exists a vector ¢lx,t}- called analogy, namely that there exists a duality between the ho-
the vector of infinitesimal rotation, such that - mogeneous statical eguations(6.l1l) {(when F=L=v=1%=0)
and the equations of structure (6.7). The duality can be
(6.3) ME = mnmﬁx_ﬁu . — established by the following replacement: T > m1m +« K and
M2>1n e . It is thus possible to take into consideration
Whereas the displacement vector u(x,t} exists both in the Lur'e - Gol'denveizer stress-functions t and m (Lur'e,
linear and in the non-linear theories, the vector ¢(x,t) 1940, Gol'denveizer, 1940)
has a meaning only in the former theory. Making use of (6.2},
*) The discrimant tensor 7 is defined as E =T

(6.3), (2.5} and (2.12), after corresponding reduction, we get = —|t=0

15
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{6.8)

-3

= 1V ® t , M=1+(VR@&m+rx x t)

It 1s readily seen that the homogeneous eqguations (6.1) are
satisfied by arbitrary functicns t and m .

In order to define the functicns t and m it 1is

necessary to employ the equations of structure [(6.7) and the

constitutive equations. This will be discussed in the fal-

lowing sections.

/. STRUCTURE OF THE FREE ENERGY FOR THE LINEAR THEORY

For an infinitesimal deformation of the directed surface
that 1s initially unstressed the free energy is a qgquadratic
function of state variables: e, K, leeo, emtemh where Hc
1s the temperature in the natural state:

1 1
LP.”I TA u“.,.lun v — v -
2 £ihiereiBiet Fk:Cighh 1e(T)-T ) +A,:e(T,=T,) +
(7.1)
1 2, 1 2
+ B.: - +B.,: -~ = - = =
By i (T =T )+B,:c (T, Ty)+ 5K, (T, T, "+ 5K, (T ~T,)

The term hﬂwlaouﬂHMIﬁov does not enter the expression be-

cause of (5.2}. The fourth rank tensors A,B,C are defined
by

(7.2) (A,B,C)=(a,B,0) ™™g or 8a ar,, (a,c)oMBo(a c)MBnc
Ak ~n =4 —m —R .
and the sccond rank tensars WH.wmﬁmp_mm by
(7.3) (A,,A ,B.,B = Ny .
R1r820 81 By) = (B uA oy vB By} e, 8y

All these tensors depend on the geometry of the directed sur-

face and the physical properties of its material. Thus, the
free energy will depend on 104 scalar functions. For certain
materials the number of scalar functions may be reduced, but

it still remains rather large. This follows from the fact

17

that the local mﬁﬁﬁﬁ of m%EEmﬁH%*w

for an arbitrary directed
surface contains, at most, only three elements, which are a
solution of the set of eguation

T T
(7.4) m.:.me.@a T m.wm.m _ .2

I}
=
| ]
|~
[fu
-
||
[ ]
2
Il
[Ess.

¢ being an orthogonal tensor.
The set of orthogonal tensors satisfying (7.4) is
called the LGS for a directed surface. It is readily seen,

that the LGS for a carrying surface, being the solution of

m.mm.m = Wm » includes the LGS for a directed surface, but

contains only three elements that are defined by

(7.5) 15 Q=g 8e,+e,8e,400n ; Q

= e,%e, =e_ Be.-e.,¥e +n8n ,

(2) -1 =1 =2"=2

where g, are the principal directions upen the carrying

surface at the moment + =0 and n is a unit ncrmal to

the carrying surface. It should be mentioned, however, that
the direction of n 1is not defined - a fact that will be

used later.
If we confine our attention to the specific case in
which the director is initially coincident with the natural

basis of the carrying surface, viz.

(7.6) d = €

(o) (o)

then formulae (2.5) are wvalid, and we have

(7.7) k = -bem , kek' = b°
Hence, instead of (7.4), we get
H.wrm“_ E-WM.-D__H. = WN . mtw.—.m.ﬁ = @

o
V In the sequel the local group of symmetry is abbreviated as LGS .
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ﬁﬁmmﬂnmwwo:muzﬂﬂwﬁwﬂmmmruiﬁ:mwwsmhmmmowmanHwHﬂﬂ
surface will be the same as the LGS for a directed surface
if, and only if, the tensor 8 18 of diagonal form in the
natural basis of the carrying surface. Furthermore, it is
clear that the full LGS for a physicael directed surface is
contained in the LGS for a directed surface, but the converse
i1s not true, because the latter group takes no regard of the
elastic properties of the directed surface.

Let the physical properties of the directed surface
remain unchanged during the transformations (7.5). Then it

can be proved that elasticity tensors from (7.1) take the form

_l

[

A = A I8r + A 1@ + Ay7,@m; + A,h8h + A (r8h + hér) +
9

{7.9)
, 5] ap
+ PmAMEMH+MH®hH + A mﬁﬁ @M@WE + Fmﬁ WQWDEMEWm
B = B I®m + B,m8r + B,m.& + B hen, + B.1®h + B hem +
(7.10)
+ s o
B,m.8r + mm%@ﬁp + mw= MGmﬂﬁmaHm + mwcﬁw mamﬁ@mﬁﬁm ’
4 oLtA1oh v By = ApyE + Ajph L By = BT+ By,
(7.11)
B2 T Byl t Bpymy
where

]

{7.12) (r,h) = e_®a_t+te_ &c

LR T 8yPg te,0e,, (X

e @Wm+m e

1! 5515

and the upper sign corresponds to the first tensor. The
tensor C may be obtained from (7.9) by replacing A by
C .

In deriving (7.9)-(7.11} we have used the fact that
during the transformations (7.5}, the tensor e remains un-

changed, but the tensor ¥ transforms into -k . Thus, it
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follows that as A does not change, the tensors

fl e

__.m__.

il
[l =

H_‘
are invariant. but the tensors m_md,mu change sign. It

2

15 impossible to simplify the formulae (7.9)-(7.11l) for a
general directed surface regardless of the physical proper-
ties of the surface material. On the other hand, these for-
mulae include by far the most interesting cases. Thus, for
example, they hold good for stiffened shells of rather general

form. If the physical properties af mﬂ are transversally

isotropic, n being the axis of isotropy, then for planes and

spherical surfaces (under necessary restrictions on 8 }, it

[ —

can be shown that tensors A,B,...must satisfy the following

equations
4 T

(7.13) (2,B,C)=00 (A,B,C) 5 (Ry,2).8y /By)=Q" (B2, By, By) -Q"
where
(7.14) Q=nen+ cosyr + sinyd 1

k 5 q
and Qg + A =85"T"""0«er B...00Q-°rx

1 - * Qo = -

S belng a tensor of k-th rank and ¢ =-an arbitrary angle.

Making use of (7.9)-(7.11l) and (7.13), we can represent

A,B,... 1in the following form
- af
A = Ayr "n8r 8n@r . +A,r®r+A, nOn+A. (1,87, +heh)
) _ ot B _
B = Bym mawpﬁmaMm+mHW@m+m I8r+B, {n,8h-hén, )
,WH = bhwh Wm = bmﬁ , mH = mbﬁu mm = mmﬁ
(7.15}

All scalar functions in (7.15) depend on the elastic
moduli, the radius of curvature of the carrying surface and

the diameter of the "microstructure” - h . It should be

noted that there are no surplus functions: there will always
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exist a material (with transversal isotropy) for which
(7.15) will form a minimum complete set. Any further sim-
plification of {7.15} can be made only for a plane, but for
this purpose it is necessary to make some additional as-
sumptions. This case is discussed in the next section in

which we derive certain formulae which are exact only for

2 plane.

8. NOEMAL ISCTROPIC DIRECTED SURFACE

As mentioned above, further simplification of (7.15) is

only mmmmwwum for planes. In the present section we consider
the situation which is, in general, only approximate. At the
same time, from the point of view of the three-dimensional
theory, it forms the upper limit of validity to a theory that
is based on the concepts of forces and couples alone. In
effect, we ignore guantities of GAUNU*U. To begin with, it
1s necessary to restrict the c¢lass of carrying surfaces that
will be considered here. These should be sufficiently smooth,
that is in the immediate wicinity of each point of the sur-
face the deviation from the tangential plane is of oﬁruv .
Ey lmmediate vicinity we mean the part of the surface that
is included in a circle cof radius h . Such a reguirement
excludes the peoints of the surface that are situated at a
distance of less than h from the ridges and the edges of the
surface. The points of the surface that include neighbour-
hoods with said properties will, if we ignore the effects of
oﬁrmy , be referred to as the poeints of isotropy. Further-
more, let us assume that the physical properties of a di-
rected surface at the given point are, within the accura-

cy of terms of cﬁrmu , ilnvariant with respect to a reversal
ln the direction of the normal to the tangential plane of

*)

The unit of length is taken to be a characteristic linear dimensicn,
such as the minimum radius of curvature.
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the carrying surface. Such points will be referred to as points

of normal isotropy, the surfaces formed by these points be-

ing called normal isctropic. Thus, for example, a plate of
isotropic material is a normal isotropic directed plane, pro-
vided the middle plane is chosen as the carrying plane. Inso-
far as a reversal in the direction of n + -n {(herein

lies the crux of the definition of a normal that is inde-
pendent of the surface orientation) does not lead to a sign
change in e , the sign change taking place only in kK and

the radii of curvature, the tensors A,C , within the terms

of oﬁrmv~ are independent of the geometry of the carrying

surface, while the tensor B is a linear function of the
radii of curvature. Moreover, 1f the free enerqgy is to be
independent of the choice of orientation on the carrying
surface, B must be a linear function of the mean curvature
of the carrying surface. As regards the tensors quwm.WH.
mw it should borne in mind that a reversal in the direc-
tion of the normal results in an interchange in HH and am .
Thus for normal isctropic deformable surfaces the free

energy takes the form

A = "W"M+mmn WM"

llen

st

{2

"M+bﬁw"mﬁep+e lwﬁov

2
(8.1)
1

2 2
o)t (Ty=Ty) 1,

where the tensors A,B,C , defined by (7.15), and the scalar

functions ra.nn.w depend on the material properties of the

surface but not on its mmnamﬁm%.

9. CONSTITUTIVE EQUATIONS FOR HEAT-FLUX VECTOR AND
THE EXCHANGED HEAT

We restrict our attention to the case of a normal isotropic
directed surface. We prescribe the constitutive equations

in the form
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(9.1) h, = nﬂﬂm&_ab_a Q = ﬂwﬁamlawu r 9p T Yp +{=) " *a

where T, corresponds to A =1 and T_ to A = 2

Substituting {9.1) into the inequalities (5.3), we get

(9.2) Kk > 0 , K1 > 0, Ya 2

Making use of (5.2) and {8.1), we can represent mb in the
tollowing form

(9.3) S5, = -A,r:e + (-1)"C m:i¢ + K(T_ -T

Equations (5.7}, after linearization and by substitution of

(9.1l), can be written as

(9.4) q.wm = o.mnﬁo + uﬁﬂr+9bu - nemmh
From these equations and (%2.1), (9.3), the equations for tem-

perature fields HH and ﬂm can easily be obtained.

10. EXAMPLE OF THE CONVENTIONAL SHELL THEORY

As an illustration of the possibilities of the present ap-
proach let us consider the problem of evaluating the elastic
moduli of a homogeneous elastic shell.fFor the isothermal case

the free energy takes the simplest mdﬂa

1

+~ H |M|

1D
[
il
[y
(e

:B:ik +

Mu

(19!

5L

1
(10.1) A= 5

If the material of the shell body is a non-polar elastic
medium, we can prove that

(10.2) A, = C,=C, =B, =B, =0
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From the nD:&HﬁHDrm of positive definiteness of free energy
(10.3) a > Q0 ,

it follows that

(10.4) A. >0 , A >0 ,A4, >0 ,C. >0, C, >0

(10.5) wwnw - H'B

Making use of dimensional analysis {Niordson, 1971), it is

easily shown that

3 3

A = A(Eh,v) , B = B{(Eh ,v) , C = C{Eh",v) .

[fs=

As these tensors are linear functions of E , we can write

3

(10.6) A(Eh,v)=EhA{v), B(Eh>,v)=Eh B(v), C(Eh>,u)=En3C(v)

From these formulae and from the requirement of normal iso-

tropy Hmw:mnndu it follows that conditions {(10.5) will be

satisfied if the conditions (10.4) hold good. An exception is

the membrane theory of shells, i.e. when nm = nw =0 . In
this case, itfollows from (10.5), that mp = mw = [ .
Now we have to determine the functions n-nm‘ﬁo.ﬁwurw.

nm.mu‘mw,mw . These must be found by experiment, which may
be mathematical or physical. It is very simple to determine
the mass density p of the surface and the inertia

tensor p8 . In order to do this, we consider a part bmﬁ
of the carrying surface. The mass Am and the inertia ten-

sor AI of the corresponding part of the shell ﬁmxmmﬁ*
are defined hy
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h/2
Am = % ﬁ 0, (1-2Hz+Kz%)dzdo
A5, -h/2
h/2
AL = % % m*HHm.valmmmuﬁwnmmn+xﬂmuﬂmaa ‘
A8, ~h/2

where p, 1is the density of the medium and K- the Gaussian

curvature of the carrying surface, while r defines the

points in the voiume {z X pmww .

It is obvious that p and pf can be found from

h/2
, A 2 3
(10.7) o = lim 44— = % o, (1-2Hz+Kz“)dz = ph+0(h”)
AS >0 AP
h/2
. B ( 2 .
pg = 1lim — = | p,2 {1-2Hz+Kz )dz(1-n®n) =
= a5 -0 PS¢ j T T
t ~h/2

(10.8)
?m

[0y 75 + 0(h>)](1-n8n) .

From {(10.8) and (10.1) it follows that the so-called sixth
equation of motion is no longer a differential one. This
means that we have an additional restriction imposed on the
constitutive equaticns. However, the form of these equations
does not permit exact satisfaction of this eguation of motion
gxcept in the case when the structure has the form of a plate
or a sphere. However, this is of no censequence to the

present theory because of the fellowing.

Let us consider two arbitrary tensor fields e and «

and evaluate the tensors T and M from the formulae (7.15).

- -—

Then it is easy to see that the following equations hold
good |

(10.9) Hpaﬁzuprpu =0(1) ¥+ 0, i=1,2,3,4,5 ;
h>0
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(10.10) lim({n™ 3

L] = 0(1)
h-+0 ©

where L, 1s the 1i-th equation of motion.

We can therefore conclude that the secondary part of
the sixth equation, which remains unsatisfied, is associated
with second order effects and may be ignored. On the other
hand, we have to require the basic operator of the elastic
shell theory to be a self-adjoint one. For this it is neces-

sary and sufficient to impose the fecllowing restriction
m-m”ﬂ_lﬁw"ﬂw

as was to be expected, insofar as the material of the shell

15 a non-peolar elastic medium.

Thus, the form of the basic equations and the asymptotic
behaviour of their ccoefficients as h-+0 are known. However,
the values of these unknown coefficients are found in an in-
verse manner by utilizing their unique correspondence to the

frequency spectrum of an arbitrary "shell-like" structure ,

chosen conveniently. We
value problems - one of
structure and the other

Problem l: We are

demonstrate this by solving two eigen-
which describes a three-dimensional
a two-dimensional one.

required to determine the eigenfre-

quencies of an elastic body that occupies the region

[-h/2 <2 <h/2 , ~a<2x<a, -b<y<b]

and is subject to the following boundary conditions

N"HH.HM =
/ 4 Hmm ANH

X = x5 s V=W =0

th o U

Il
=
il

0

S
H

= 1
xRy

|
L
e 1|

~
Il

(o
ar

KX

T
YY

Problem 2: We are required to determine the eigenfre-
quencies of an elastic directed plane that occupies the region
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[-a < x <a, =-b<y<bl] where

. . . | _ 2 (2m-1)%n2
and is subject to the following boundary conditions a = 5 i 2  n,m=1,2,...,
a

2 _ (2n-1)%n

K>1, Kg > 1, K, > Hwnm\:u are numbers and G = E/2(Hv) .
The eigenfrequencies of problem 1 are tabulated on the left
21 side and those of problem 2 on the right.

uﬁ".wmu U

I
o
I
-
e
i
o
H
-
=
I
-

)
Y5

2 3
H__."u_..uu._ U

[
c
1
-
=
|
-
I
-
=
|
-

1 3

| We determine the elastic moduli by demanding coin-
It is clear from physical reasoning that the problems . Y 7

cidence of the frequency dispersion surfaces cbtained using
the two-dimensional theory with the lowest foils of the cor-

responding surfaces obtained from the three-dimensiocnal

are almost identical, provided the thickness h is suffi-
ciently small. We shall say that two elastic systems are
identical if their corresponding eigenfrequencies are

; theory of elastici . .
identical. Y icity. Of course, #:Hm requirement has a

meaning only when h -+ 0.

From (10.11)-(10.15) it follows that the elastic
moduli are determined by the relations

The solutions of these problems can be found without
any difficulty. Thus, making use of (10.4) and (10.6), the

cigenfrequencies can be written down in ascending order

of magnitude _ 3 y, 3
nu + ﬁw = Eh~/12(1-v")} , nm = Gh~ /12 ,
Theory of Elasticity Shell Theory (10.19) ,bw + bm = mrxﬁplcwv . mM = Gh |,
(10.11) w = HMHWWHMU stvoh?) ,  w= nm“nwah+cﬁrbw : A, = (n°/12) +Gh
(10.12) w = mam , 0 = M% nm ‘ These relations are well-known in the classical shell theory.
A +A The only m%nmﬂﬁuﬂz 15 the modulus of transverse shear wQ ;
(10.13) w = m“m a® | Y = rWMIw st but Reissner's well-known calculations give the value of
chm Loe A ba as {(5/6)Gh , which almost coincildes with the value
(10.14) w = mﬁmm + amv , w = mmﬁno + awu , of Ay in (10.19). In order to determine the remaining
:m :Hmb 2 ’ moduli B, and B, we may study, for example, the vibration
(10.15) w = mnmm o mmmw+aﬁsmu , w = Gl “% n Mmﬂmv+oh:mv . problem of a thin hollow sphere or a hollow cylinder. From
h ) ‘Gh the solutions of both these problems it transpires that,
(10.16) w = mnmm:wl +amu‘ S=1,2,.., L within an accuracy of oﬁsmu. moduli B, and mw vanish.
h™ , Moreover, these solutions confirm the formulae (10.19).
(10.17) w = mﬁﬁmmlqu ra?l, 5=2,3.., - Generally speaking, the next problem should be to prove that
h 5 , the elastic moduli so obtained do not depend on the boundary
(10.18) w = mﬁﬁwmlwua +mman, s = 2,3.., o conditions. Although the answer is self-evident, a strict
h

proof would be in order. Such a proof can be given by making
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use of the idea from Weinstein's method of intermediate

operators (see, for example, Gould, 1966}.

DISCUSSION

Insofar as the model considered here had only five degrees
of freedom {(at every point), we could describe cnly a cor-
responding number of frequency dispersion surfaces for the
elastic layer. This means that the theory so developed is
valid only in the region of sufficiently low frequencies.
Moreover, it is rather interesting to point ocut that all
dispersion surfaces that were discarded (10.16)-(10.18) have
the same asymptotic order as those included in the analysis
(10.14), (10.15). It follows from this that shell theories
that include transverse shear deformations are asymptotically
nG more accurate than those that ignore such deformations.
Therefore, any attempt to construct a shell theory accurate
to within oﬁrsv , where n > 2 , is predestined to fail.
Nevertheless, such theories turn out to be both useful and
quite accurate. However, estimates of their accuracy cannot
be based on a simple manipulation of guantities of 0(h™) ’
but should account for the actual structure and the value of
the coefficients {(which, of course, depend on the external
loads) in the asymptotic expansions. In essence, such
methods of estimating the accuracy can no longer be called
asymptotic in the usual sense.

In this connection, it should be stressed that in
speaking of the second order effects (§8) we mean only
the inherent estimates of the theory of m,mpumnﬁm& surface.
As a matter of fact, we are unable to point ocut the accuracy
of the given theory in comparison with the three-dimensional
theory of elasticity. This may be considered a drawback of
the theory. However, from our point of view, the possibility
of constructing a theory without resort to the three-dimen-

sional theory of elasticity is, in itself, a major advantage
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of the present approach. Of course, as in the classical
theory of elasticity, we do not touch upon the question of a
mathematically exact meaning of such physical concepts as
force, couple, displacement, rotation and temperature.
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