
3. A new approach to the analysis of free rotations of
rigid bodies

3.1 Introduction

Free rotation of rigid bodies was the first problem that was completely solved in
dynamics of rigid bodies. Originally it was studied by Leonard Euler. Later Poinsot
offered the famous geometrical interpretation to show real rotation of the body.
In modern literature this problem is called the case of the integrability by Euler –
Poinsot. Up to now no theoretical adaptations were made to the classical solution,
the description of which is presented in all books on dynamics of rigid bodies. The
classical solution allows perfectly to find the rotations, i.e. angular velocities, of
the body. However, the determination of the turns, i.e. angles, does not impress so
much. Moreover, it may be shown that the application of the Euler angles to this
problem is not the best way because of several reasons. Firstly, the Euler angles,
as a rule, give a representation which is rather difficult for interpretation. Secondly,
this representation generates difficulties for the numerical realization on computers.
By these reasons it seems to be useful to give an alternative approach to the analysis
of the Euler – Poinsot problem, that is based on the concept of the tensor of turn
called in the sequel turn-tensor. Some main facts concerning the turn-tensor are
presented in the introduction, where the new theorem on the representation of the
turn-tensor is given. The theorem allows to simplify the solution of problems of the
dynamics of rigid bodies.

In Euler-Poinsot’s problem it is not difficult to find four first integrals of the basic
equations. Three of them are well known. They express that the angular momentum
vector of the body is constant. The fourth integral is that of energy which is directly
expressed in terms of turns rather than of angular velocities. The energy integral in
such a form allows to construct the most suitable representation of the turn-tensor
to make the picture of turns of the body clear. It is found that there exist three and
only three different types of rotations. Two of them give stable rotations, and the
third type describes an unstable rotation. The type of rotation is determined for
the given body by initial conditions only. In fact, the third type of rotation is the
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separatrix between two stable types of rotations. Under some conditions the stable
rotations at certain moments of time can be very close to each other. Thus it is
possible for the body to jump from one stable solution to another stable rotation.
For example, the body can be rotating around the axis with minimal moment of
inertia and there upon it can change the rotation to begin the rotation around the axis
with maximal moment of inertia. Of course, small perturbations acting on the body
are needed to provoke such a situation. As final result the problem is reduced to the
integration of the simple differential equation of first order, the solution of which is a
monotonically increasing function. All required quantities can be expressed in term
of this function. It is shown how to see the turns of the body without integration of
the equations if initial conditions are given.

In the rest part of the introduction certain aspects of the tensor of turn (turn-
tensor) will be briefly presented. Partly they are known, some of them seem to be
new.

The turn-tensor is the most suitable tool for the description of turns and rotations
of rigid bodies (see, for example, Lagally [4]). In spite of this, up to now the
turn-tensor has no applications in dynamics of rigid bodies. The main aim of the
paper is to show the usefulness of the turn-tensor. As an illustration the classical
Euler – Poinsot problem was chosen. This problem is described in all details by
many authors (see, for example, Macmillan [6], Goldstein [2], Golubev [3]. So
it is possible to see advantages and shortages of the approach, that is based on an
application of the turn-tensor. However, it seems to be possible that a new solution
of the old problem will be interesting and useful by itself.

Below the direct tensor calculus is used (see Lagally [4] or appendix to the book
by Lurie [5]). In those books one can find the initial information about the turn-
tensor. From the formal point of view our presentation is rather close to that in the
book by Arnold [1].

A properly orthogonal tensorP is called turn-tensor and can be defined as a
solution of the equations

P · PT = PT · P = E, detP = +1,

whereE is the unit tensor.
Vectors of the position of pointsA andB of a rigid body will be denoted by

RA(t) andRB(t). The basic equation of the kinematics of a rigid body has the form

RA(t) = RB(t) + P(t) · (rA − rB), r ≡ R(0), P(0) = E ,

where tensorP(t) is called the turn-tensor of a rigid body.
The turn-tensorP(t) of the body does not depend on the choice of any points of

the body, it describes the turns of the body and can be studied by itself.
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Let us remind theEuler theorem: An arbitrary turn-tensorP(t) 6= E is repre-
sented in unique manner in the form

P(t) = (1 − cosϕ(t))m(t)⊗m(t) + cosϕ(t)E + sinϕ(t)m× E, (3.1)

where the unit vectorm(t) is the fixed vector ofP(t)

P(t) · m(t) = m(t) · P(t) = m(t) ,

the angle of turn,ϕ(t), is supposed to be positive if the turn goes counter-clockwise.
The proof of the Euler theorem is based on the theorem of spectral decomposition

of unsymmetrical second-rank tensor (see, for example, Goldstein [2]). A much
more simple proof can be found in the paper by Zhilin [9]. The fixed vectorm(t)

and the angle of turn can be found from the formulae

1 + 2 cosϕ = trP, 2 sinϕ m(t) = −P×, (a⊗ b)× ≡ a× b,

where tensorP on the right-hand side can be taken in any given form. Let us con-
sider the vector of turn,ϕ(t), and the logarithmic tensor of turn,R(t)

ϕ(t) = ϕ(t)m(t), R(t) = ϕ(t)× E.

Theorem: The turn-tensorP(t) can be expressed in the form

P(t) = expR, R = ϕ(t)× E. (3.2)

The expression (3.2) is one of the forms of Euler’s theorem (3.1).
Definition: The straight line spanned by the fixed vectorm(t) of turn-tensor

P(t) is called an axis on turn of the body.
It is seen that there are infinitely many parallel lines and any of them can be

called axis of turn. This seems to be strange. Really, if a cylinder is rotating around
its own axis, then, namely, this axis appears to be named axis of turn. However,
this is impossible, because only the definition given above is in accordance with
Galilei’s principle of relativity.

Let us consider the left,S(t), and the right,Sr(t), tensors of spin (̇ϕ ≡ dϕ/dt)

S(t) ≡ Ṗ(t) · PT(t), Sr(t) ≡ PT(t) · Ṗ(t), (S = P · Sr · PT).

Spin-tensorsS andSr are antisymmetric tensors and have accompanying vectors.
Definition: The accompanying vectorω(t) (Ω(t)) of the left (right) spin-tensor

S(t) (Sr(t)) is called the left (right) vector of angular velocity

S(t) ≡ Ṗ(t) · PT(t) = ω(t)× E, (Sr ≡ PT · Ṗ = Ω× E = E×Ω).
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These equations can be rewritten in equivalent form:

Ṗ(t) = ω(t)× P(t), Ṗ(t) = P(t)×Ω(t). (3.3)

The first of these equations is called the left Poisson equation, and the second one
the right Poisson equation. There exists the relation

ω(t) = P(t) · Ω, ⇒ Ω = PT · ω(t). (3.4)

In dynamics of rigid bodies the vectorω(t) is called angular velocity in the space,
whereas the vectorΩ(t) is called angular velocity in the body. Of course, both of
them are vectors in the space. If the turn-tensorP(t) is known, then it is easy to find
vectorsω(t) andΩ(t) in the form

ω(t) = −
1

2
(Ṗ · PT)×, Ω(t) = −

1

2
(PT · Ṗ)×. (3.5)

The inverse problem, i.e. the determination of the turn-tensor, when angular veloc-
ities are known, is called the Darboux problem. If the left vector of angular velocity
is known we getthe left Darboux problem

Ṗ(t) = ω(t)× P(t), P(0) = P0, P0 · PT
0 = E, detP0 = 1.

If the right vector of angular velocity is known, we getthe right Darboux problem

Ṗ(t) = P(t)×Ω(t), P(0) = P0, P0 · PT
0 = E, detP0 = 1.

How to solve the Darboux problem is known, however it is not simple task in a
general case. So it will be much better to avoid the solution of the problem in full
extent. In practice it is possible.

Proposition: Let the tensorPl(t) (the tensorPr(t)) be a particular solution of
the left (right) Poisson equation (3.3). Then the general solution of the left (right)
Darboux problem has the form

P(t) = Pl(t) · PT
l (0) · P0,

(
P(t) = P0 · PT

r (0) · Pr(t)
)
.

Sometimes this fact can help to find the general solution.
Making use of Euler’s theorem (3.1) and the first expression of (3.5) it is easy to

get
ω(t) = ϕ̇m(t) + sinϕ(t)ṁ(t) + (1 − cosϕ)m× ṁ(t).

In many books on mechanics this expression is presented in a wrong form (see, for
example, Golubev [3])

ω = ϕ̇m(t). (3.6)
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Definition: The straight line spanned on the vector of angular velocityω(t) is
called an axis of rotation of the body.

Theorem:
— If the fixed vector of the turn-tensor does not depend on time, then the axis of

turn coincides with the axis of rotation;
— If vectorω(t) has constant direction, then the axis of turn coincides with axis

of rotation if, and only if the vectorω is the fixed vector of turn-tensorP0 = P(0).
Therefore, it is well possible that the body turns around one axis, but at the same

time the body rotates around another axis, which, for example, is orthogonal to the
axis of turn. So when working with interpretation by Poinsot one must be very
careful to avoid mistakes.

Let us consider the composition of turns, which are defined by turn-tensorsP2(t)

andP1(t)

P(t) = P2(t) · P1(t). (3.7)

Let the angular velocitiesω(t), ω1(t) andω2(t) correspond to the turn-tensors
P(t), P1(t) andP2(t), respectively,

Ṗ(t) = ω(t)× P(t), Ṗ1(t) = ω1(t)× P1(t), Ṗ2(t) = ω2(t)× P2(t). (3.8)

The following identity will be useful:

(A · a)× (A · b) = (detA)(A−T) · (a× b) (3.9)

which is valid for any nonsingular tensorA and any vectorsa andb. If tensorA is
a turn-tensorQ, then identity (3.9) can be simplified as follows:

Q · (a× b) = (Q · a)× (Q · b) ⇒ Q · (a× E) · QT = (Q · a)× E. (3.10)

Theorem: The left vector of an angular velocity of the composition (3.7) can be
expressed in term of vectors (3.8) as follows:

ω(t) = ω2(t) + P2(t) · ω1(t). (3.11)

The proof follows directly from (3.7):

Ṗ = Ṗ2 · P1 + P2 · Ṗ1 ⇒ ω× P = ω2 × P + P2 · (ω1 × P1) ⇒
ω× E = ω2 × E + P2 · (ω1 × E) · PT

2 .

Making use of the second identity (3.10) this equality can be rewritten in the form
(3.11).

In textbooks on theoretical mechanics (see Golubev [3]) the equality (1.21) takes
the form

ω(t) = ω2(t) + ω1(t). (3.12)
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a a

Figure 1: Vector and double vector

It is difficult to say who was the author of the formulae (3.6) and (3.12). In any case
they were known at the end of the first quarter of this century.

Let us accept the notation

Q(ϕe) ≡ (1 − cosϕ)e⊗ e+ cosϕE + sinϕe× E (3.13)

for a turn on the angleϕ around the vectore: |e| = 1. For any turn-tensorT the
formula

T · Q(ϕe) · TT = Q(ϕe′), e′ ≡ T · e (3.14)

is valid. It can be readily proved, that

Q(ϕm) · Q(ψn) = Q(ψn ′) · Q(ϕm), n ′ ≡ Q(ϕm) · n.

This rule of the pseudo-permutability is important in many cases.
The main merit of a turn-tensor is that it can be represented in many equivalent

forms, a choice of which depends on special properties of the problem under con-
sideration. For example, Euler’s theorem (3.1) is efficient if the axis of a turn is a
priori known and does not change in time. If it is not so then Euler’s theorem is
practically useless. However, in the latter case one can represent the general turn as
the composition of the simplest turn-tensors of the form (3.13), where vectore is a
constant vector.

Let there be given a turn-tensorQ(ϕe), wheree = const. The left and the right
vectors of angular velocity in such a case coincide and can be found by making use
of the simplest formula (3.6),

ω(t) = Ω(t) = ϕ̇e, Q(ϕe) · ω = ω.

In order to study the rotations of the body it is useful to take the double vector into
consideration, what can be done as follows. Let us take the vectora, which will
be called a basis. Let us connect to the vectora another vectorb, which will be
called a cross-vector (see Fig.1). The rigid construction of two vectorsa andb will
be called a double vector and denoted as−→a . Let us introduce the double material
“vector”

−→
AB which is made from the points of the body. The position of the “vector”

−→
AB determines the position of the body in a unique manner. Thus it is possible to
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observe the movement of the material “vector”
−→
AB in order to know the movement

of the body. The basis of the double vector
−→
AB will be denoted byAB, whereA

andB are points of the body.
Let us formulate therepresentation theorem of the turn-tensor: Let there be

given two arbitrary unit vectorsm andn. Any turn-tensor can be represented in the
form of a composition of turns around vectorsm andn:

P(t) = Q (ψ(t)m) · Q (ϑ(t)e) · Q (ϕ(t)n) , e = m× n/|m× n|, (3.15)

whereψ(t), ϑ(t), andϕ(t) are called angle of precession, angle of a nutation, and
angle of own rotation, respectively. If the vectorm coincides with the vectorn, then
a vectore is any unit vector orthogonal to the vectorm; in that case the anglesϕ,
ψ, andϑ are called Eulerian angles.

Proof: Let the vectorsm andn be placed in the plane of Fig.2.

m

E

S

n

d

D
F

ø

ö

e = m n/ |m n|x x

õ

N

Figure 2: Representation of the turn-tensor

Let us choose the double vector
−→
d and the double material vector

−→
AB in such a

manner, that at the moment of timet = 0 the vector
−→
AB coincides with the double

vector
−→
d and in addition the basisd of the double vector

−→
d coincides with a unit

vectorn: d = n. At the instantt > 0 the double material vector
−→
AB coincides with

the double vector
−→
D (t). The conic surfaceS on Fig.2 is made up by a rotation of the

basisD of the double vector
−→
D around the unit vectorm. The turn-tensorP(t) turns

the double material vector
−→
AB in such a way, that at the instantt = 0 the vector

−→
AB

coincides with the double vector
−→
d and at the moment of timet > 0 the vector

−→
AB

coincides with the double vector
−→
D (t). We want to construct the turn-tensorP(t)

as a composition of the simplest turns around the axism andn. Let us accept, that
P(0) = E.
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The first turn is by the angle of nutationϑ(t) around the unit vectore (see Fig.2),

Q(ϑe) = (1 − cosϑ)e⊗ e+ cosϑE + sinϑ e× E. (3.16)

As a result of this turn the basisAB of the double material vector
−→
AB will be placed

on the surfaceS and the vectorAB coincides with the vectord ′,

d ′ = Q(ϑe) · d = Q(ϑe) · n ≡ n ′.

The second turn is by the angle of precessionψ around the axism:

Q(ψm) = (1 − cosψ)m⊗m + cosψE + sinψ m× E.

In this case the basisAB of the double material vector
−→
AB is sliding on the surface

S (see Fig.2) and after all it coincides with the basisD of the double vector
−→
D . It is

clear that
D(t) = Q(ψm) · n ′ = Q(ψm) · Q(ϑe) · n. (3.17)

Finally, the third turn is by the angle of own rotationϕ around the basisD of the
double vector

−→
D ,

Q(ϕD) = (1 − cosϕ)D⊗ D + cosϕE + sinϕ D× E.

After that turn the cross-vector of the double material vector
−→
AB coincides with the

cross-vector of the double vector
−→
D and therefore the vector

−→
AB coincides with the

double vector
−→
D . Now we get the total turn-tensorP(t) in the form

P(t) = Q(ϕD) · Q(ψm) · Q(ϑe). (3.18)

It seems that this representation does not coincide with the equation (3.15). How-
ever, (3.18) can be written in the form (3.15). Indeed, making use of (3.14) and
(3.17) we can write down

P(t) = Q(ψm) · Q(ϑe) · Q(ϕn) · QT(ϑe) · QT(ψm)︸ ︷︷ ︸
Q(ϕD)

· Q(ψm) · Q(ϑe) =

= Q(ψm) · Q(ϑe) · Q(ϕn).

This expression is identical to (3.15). The turn-tensor (3.18) can be taken in another
form,

P(t) = Q(ϕD) · Q(ψm) · Q(ϑe) · QT(ψm) · Q(ψm)︸ ︷︷ ︸
E

=

= Q(ϕD) · Q(ϑe′) · Q(ψm), (3.19)
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wheree′ = Q(ψm) · e.
Acceptingm = n in (3.19) we have the classical representation of the turn-tensor

expressed in terms of Eulerian angles. The full proof of the latter case can be found
in the paper by Zhilin [9].

Remark: As it can be readily seen the anglesψ, ϑ, ϕ are not uniquely defined.
For example, the turn on the angleϑ in (3.16) can be positive(ϑ > 0) or negative
one(ϑ < 0). Of course, the value of the angleϑ will be different in these cases. As a
matter of fact this ambiguity is of fundamental importance. Really, the direction of
the rotation is determined by initial conditions of the problem under consideration.
Thus the representation of the turn-tensor must admit the freedom of choice of the
direction of the rotation.

The kinematic Euler equation immediately follows from representations (3.15)
and the theorem (3.11),

ω(t) = ψ̇m + ϑ̇Q(ψm) · e+ ϕ̇Q(ψm) · Q(ϑe) · n = ψ̇m + ϑ̇e′ + ϕ̇D, (3.20)

since the vectorsm, n, e are constant. For the right vector of angular velocity we
have the result

Ω(t) = PT · ω(t) = ϕ̇n + ϑ̇QT(ϕn) · e+ ψ̇QT(ϕn) · QT(ϑe) · m.

It is curious, that the result (3.20) can be found by a wrong way. Let us take the
representation of a turn-tensor in the form (3.19) and use the formulae (3.6) and
(3.12). We shall get the correct result (3.20). This is so because of a superposition
of two mistakes. Let us remove one of the mistakes. Let us take the representations
of a turn-tensor in the form (3.15). In this case the formula (3.6) is correct for the
turn-tensorsQ(ψm), Q(ϑe), andQ(ϕn). The angular velocityω(t) calculated
through the formula (1.22) is

ω(t) = ψ̇m + ϑ̇e+ ϕ̇n,

which is obviously wrong. The formulae (3.6) and (3.12) are very popular in the
textbooks on theoretical mechanics. However, it does not matter since when solving
the problems the correct result (3.20) is used. It should be mentioned that in the
books on dynamics of rigid bodies the particular cases of (3.20) are used. The
theorem (3.15) plays an important role in solving of many problems. The vectors
m andn are supposed to be unknown at the beginning. They must be chosen in
the process of solving in order to find the simplest form of the solution. We have
to point out that the use of Eulerian angles, as a general rule, leads to inconvenient
solutions.
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3.2 Free rotation of rigid bodies

This classical problem allows to see in all details how the turn-tensor is working.
The solution given below seems to be too long. However, it can be seen that the
large part of a solution is devoted to an answer on the question why we have to
choose a turn-tensor in the offered form.

3.2.1 Statement of the problem

Let us consider a rigid body the centre of mass of which rests in some inertial frame
of reference. External forces and moments do not act on the body. The position of
a body at the instantt = 0 will be called a reference position. The position of a
body at the given instantt > 0 will be called an actual position. The latter can be
determined by a turn-tensorP(t): P(0) = E. The central tensor of inertia of a body
at t = 0 is specified by its spectral representation,

Θ = θ1d1 ⊗ d1 + θ2d2 ⊗ d2 + θ3d3 ⊗ d3,

where the quantities

0 < θ1 ≤ θ2 ≤ θ3, θ1 < θ3, θ3 ≤ θ1 + θ2

are called principle moments of inertia, the vectorsdk are eigenvectors of the tensor
Θ at t = 0. In the actual position the central tensor of inertia can be represented in
the form

Θ(t) = P(t) · Θ · PT(t) =

3∑

k=1

θkDk ⊗ Dk, Dk = P(t) · dk.

The kinetic moment (moment of momentum, angular momentum)L of a body and
its kinetic energyK are defined by the formulae

L(t) = P(t) · Θ · PT(t) · ω(t); 2K = ω · P(t) · Θ · P(t) · ω = ω(t) · L(t),

where the vectorω(t) is the left vector of angular velocity. Making use of the right
vector of angular velocity,Ω(t), we can write down

L(t) = P(t) · Θ · Ω(t); h ≡ 2K = Ω(t) · Θ · Ω(t).

Euler’s second law of dynamics gives

L̇ = 0 ⇒ L = const ⇒ P · Θ · PT · ω = L = const. (3.21)
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Thus we have three first integrals. Usually they are not used since they contain the
turns in addition to angular velocity. However, we will work with these integrals.
The equation (3.21) can be rewritten in the form

ω(t) = P(t) · Θ−1 · PT(t) · L , L = const, (3.22)

whereω(t) andP(t) are related by the left Poisson equation (3.3). Making use of
the representation theorem of the turn-tensor (3.15) we can look for a tensorP(t) in
the form

P(t) = Q(ψp) · Q(ϑe) · Q(ϕn), e = (p× n)/|p× n|, (3.23)

where the unit vectorsp andn are not a priory known, but they do not depend on
time. The vectorω(t) corresponding to the tensor (3.23) is defined by

ω(t) = ψ̇p + ϑ̇Q(ψp) · e+ ϕ̇Q(ψp) · Q(ϑe) · n. (3.24)

After substituting expressions (3.23) and (3.24) into the equation (3.22) we will get
an equation for finding the anglesψ, ϑ, andϕ. In order to find the anglesψ, ϑ and
ϕ we have to choose unit vectorsp andn. This choice is important to arrive at a
solution of simplest form. Thus, first of all we have to point out unit vectorsp and
n. For this let us note that from the equation (3.22) follows

h ≡ 2K = L · ω = L · P(t) · Θ−1 · PT(t) · L . (3.25)

Let us show that the kinetic energy has a constant value, i.e. the quantityh, deter-
mined by (3.25), is the first integral of the equation (3.22). We have

ḣ = L · Ṗ · Θ−1 · PT · L + L · P · Θ−1 · ṖT · L =

= L · (ω× P) · Θ−1 · PT · L − L · P · Θ−1 · (PT ×ω) · L =

= L · (ω×ω) − (ω×ω) · L = 0 ⇒ h = const.

The energy integral (3.25) contains the turns only. In such a form this integral
was never used. However, especially this form of an energy integral allows to find
the most suitable form of a turn-tensor. In addition, the integral (3.25) has a clear
geometrical sense: free rotations of a body go by such a manner, that the inverse
central moment of inertia of a body with respect to the axis spanned on the vector
L and passing through the centre of mass has constant magnitude.

3.2.2 Transformation of the energy integral

In general the turn-tensor can be expressed through a set of three parameters. The
energy integral gives the relation, superposed on these parameters. Therefore, only
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two of them are independent variables, and free rotations of the body are two-
parameter movements. Thus it is necessary to find the general form of a two-
parameter turn-tensor conserving the energy. Let us introduce the unit vectorm(t)

lm(t) ≡ L · P(t) = PT(t) · L = Θ · Ω(t), l ≡ |L | > 0. (3.26)

The energy integral can be rewritten in the form

m(t) · Θ−1 · m(t) =
h

l2
≡ h

l2
m · E · m ⇒

m(t) ·
(

Θ−1 −
h

l2
E

)
· m(t) = 0. (3.27)

The equation (3.27) determines the bundle of the straight lines passing through the
centre of mass of the body. If these straight lines are known then we are able to
establish the structure of the turn-tensor by making use of (3.26). The geometrical
sense of these straight lines is obvious: it is the set of those axes, passing through
the centre of mass, relative to which the inverse moments of inertia of the body are
the same. The bundle of the straight lines (3.27) is the ruled surface fixed in the
space. It is easy to point out the equation of this surface. The vectorm(t) can be
represented as

m(t) = xmd1 + ymd2 + zmd3, x2
m + y2

m + z2
m = 1, (3.28)

wherex, y, z are the axes of coordinates spanned by the vectorsdk that are fixed in
the space. Let us introduce the spectral representation

Θ−1 −
h

l2
E =

(
1

θ1

−
h

l2

)
d1 ⊗ d1 +

(
1

θ2

−
h

l2

)
d2 ⊗ d2 +

(
1

θ3

−
h

l2

)
d3 ⊗ d3.

(3.29)
Let us suppose that the inequalities

l2 − hθ1 > 0, l2 − hθ3 < 0 (3.30)

are valid. It means that we eliminate the permanent rotations from the analysis
for the sake of brevity. Making use of (3.28) – (3.30) the equation (3.27) can be
rewritten as (

h

l2
−

1

θ3

)
z2

m =

(
1

θ1

−
h

l2

)
x2

m +

(
1

θ2

−
h

l2

)
y2

m. (3.31)

The type of the surface (3.31) essentially depends on the signs of coefficients in the
equation (3.31). The coefficientshθ3 − l2 andl2 − hθ1 are always positive. The
sign of the coefficient at the variabley2

m,

σ ≡ l2 − θ2h, (3.32)
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Figure 3: The caseσ > 0

depends on initial conditions and can be different. There exist three different cases,

a)σ = 0, b)σ > 0, c) σ < 0. (3.33)

These cases must be studied separately. The parameterσ defined by (3.32) can be
represented in the form

σ =

(
1 −

θ2

θ3

)
l23 −

(
θ2

θ1

− 1

)
l21, lk ≡ L · dk. (3.34)

As it will be seen below, rotations of a body in cases (3.33) essentially differ from
each other.

3.2.3 Rotations of a body in the caseσ = 0

If the parameterσ is equal to zero, then the surface (3.31) decomposes in two planes:

xm =

√
θ1

θ3

θ3h − l2

l2 − θ1h
zm ≡

√
θ1

θ3

θ3 − θ2

θ2 − θ1

zm; xm = −

√
θ1

θ3

θ3 − θ2

θ2 − θ1

zm. (3.35)

These planes are the characteristics of a body. The vectorm(t) must belong to one
of these planes in any instant — see Fig.3, where the parts of the planes (3.35) are
shown. The vectorL is supposed to belong to the first of planes (3.35). At the
instantt > 0 the vectorm(t) is a result of the turn of the vectorL by the turn-tensor
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PT(t). It is obvious, that the vectorL must be turned around the normale to the
plane in which it is placed. The normal vectorecan be found as

e = (d2 × L)/|d2 × L | ≡ (d2 × L)/

√
l2 − l22.

The turn by the angleϑ around a vectore is determined by the turn-tensorQ(ϑe),
where the notation (3.13) is used. It is always possible to add to this turn the turn
around the vector̂L ≡ L/l, sinceQ(ψL̂) ·L = L . Thus, if the parameterσ is equal
to zero, then the turn-tensor is forced to admit the representation

P(t) = Q(ψL̂) · Q(ϑe), e = d2 × L/

√
l2 − l22, L̂ ≡ L/l. (3.36)

The vectorm(t) takes the form

lm(t) = PT · L = QT(ϑe) · L =
1

sinα
(l sinϑ d2 + sin(α − ϑ)L) , (3.37)

where the notations

sinα =

√
l2 − l22 / l, cosα = l2/l

are used — see Fig.3.
The left vector of an angular velocity corresponding to the turn-tensor (3.36) is

calculated in accordance with (3.11)

ω(t) = ψ̇L̂ + ϑ̇Q(ψL̂) · e.

Making use of this expression the equation (3.22) can be written in the form

ψ̇L̂ + ϑ̇Q(ψL̂) · e = Q(ψL̂) · Q(ϑe) · Θ−1 · lm(t).

Multiplying this equation by the tensorPT we will get

ψ̇m(t) + ϑ̇e = lΘ−1 · m(t).

Since the vectorsm andeare orthogonal, from the equation (3.36) follows

ψ̇ = lm · Θ−1 · m = h/l, ϑ̇ = le · Θ−1 · m, (3.38)

where the energy integral was used. Making use of (3.37) one can find

lΘ−1 · m =
1

sinα

(
l sinϑ

θ2

d2 + sin(α − ϑ)ω0

)
, Θ−1 · L = ω0 ≡ ω(0).

Now the second equation of (3.38) takes the form

ϑ̇ =
sin(α − ϑ)

sinα
e · ω0 ≡ −

1

2
γ sin(α − ϑ), γ ≡ −2

e · ω0

sinα
. (3.39)
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The solutions of equations (3.38) and (3.39) are obvious and have the form

ψ(t) =
ht

l
=

lt

θ2

; cos(α − ϑ) =
1 + cosα − (1 − cosα)eγt

1 + cosα + (1 − cosα)eγt
, (3.40)

where the initial conditionsψ(0) = 0, ϑ(0) = 0 are used.
The solution (3.40) depends on the parameterγ,

e · ω0 =

(
1

θ1

−
1

θ3

)
l1l3

sinα
⇒ γ = −

(
1

θ1

−
1

θ3

)
2l1l3

sinα
.

The sign ofγ is determined by the initial conditions. Ifl1l3 > 0, thenγ < 0 and
cos(α − ϑ) is approaching to 1 undert → ∞. In this case the vectorL belongs to
the first plane from (3.35), as it is shown on Fig.3. The angleϑ is tending toα. The
rotation of the body in this case can be readily seen. To this end let us write down
the vectorD2(t) corresponding to the middle moment of inertiaθ2 :

D2(t) =
sinϑ

l sinα
L +

sin(α − ϑ)

sinα
Q

(
lt

θ2

L̂
)

· d2 ≡ P(t) · d2.

At the instantt = 0 the vectorD2(0) coincides with the vectord2. Whent > 0 the
vectorD2(t) rotating around the vectorL is asymptotically approaching the vector
L . Whent has a great magnitude the body rotates permanently around the axis with
the moment of inertiaθ2.

It is not necessary to discuss this case in more details, because it can be readily
proved, that the rotation of the body in the caseσ = 0 is unstable. This means that
if the vectorL does not belong to the plane (3.35) exactly (what is impossible in the
reality) then the rotation of the body will differ from (3.40) very much. In fact the
caseσ = 0 is a separatrix between the stable rotations, which will be constructed
below.

3.2.4 Rotations of rigid bodies in the case of positiveσ

If parameterσ, determined by (3.32), has a positive magnitude, then the coefficient
at variabley2

m is plus one. Let us eliminate the coordinatez2
m = 1 − x2

m − y2
m from

the equation (3.31), which then will take a form

x2
m

a2
+

y2
m

b2
= 1, a2 =

θ1(hθ3 − l2)

l2(θ3 − θ1)
, b2 =

θ2(hθ3 − l2)

l2(θ3 − θ2)
. (3.41)

The equation (3.41) is the equation of a cylindrical surface with an elliptic cross-
section. The curve, described by the end of vectorm(t), is the curve of intersection
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of the surface (3.41) and the unit spherex2
m + y2

m + z2
m = 1. Let us show that the

semi-axes of ellipse (3.41) are less than 1. To this end let us note that

hθ3 − l2 =
θ3 − θ1

θ1

l21 +
θ3 − θ2

θ2

l22.

For the semi-axesa andb we have

a2 =
1

l2

(
l21 +

θ1

θ2

θ3 − θ2

θ3 − θ1

l22

)
<

1

l2

(
l21 + l22

)
< 1,

b2 =
1

l2

(
θ2

θ1

θ3 − θ1

θ3 − θ2

l21 + l22

)
=

1

l2

(
l21 + l22 +

θ3(θ2 − θ1)

θ1(θ3 − θ2)
l21

)
< 1.

The underlined term here is less thanl23 because of (3.34) and ofσ > 0. It may be
readily seen that

a2

b2
=

θ1(θ3 − θ2)

θ2(θ3 − θ1)
< 1. (3.42)

This ratio is a characteristic of body and does not depend on initial conditions. Due
to the equation (3.41) the coordinatesxm, ym andzm can be expressed in terms of
the angleγ(t)

xm = a cosγ, ym = b sinγ, zm =

√
1 − a2 cos2 γ − b2 sin2 γ. (3.43)

For the coordinatezm the sign “+” is chosen, but it makes no difference. It is
clear that inequalities

√
1 − b2 ≡ zmin ≤ zm ≤ zmax ≡

√
1 − a2

are valid. In order to have a clear idea about the turns of a body for the caseσ > 0,
let us rewrite equation (3.31) in the form

z2 = (1 − a2)
x2

a2
+ (1 − b2)

y2

b2
. (3.44)

This is an equation of a conical surface with an elliptic cross-section. Let us con-
sider the cross-section of the surface (3.44) with the planez = zmin =

√
1 − b2,

i.e., let us consider the ellipse

x2

a2
1

+
y2

b2
= 1, a2

1 =
1 − b2

1 − a2
a2 < a2. (3.45)

Here the coordinatesx, y are not coordinates of the end of a vectorm(t) any more.
Let us show the cone (3.44) in Fig.4, in which the ellipse (3.45) is the ellipse
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ADEFA with semi-axesa1 andb and distancesOO1 =
√

1 − b2, OA = OE = 1.
All admitted vectorsm(t) at any instantt belong to the conic surface (3.44). Two of
them, namelym =

−−→
OA andm =

−→
OE have its ends on the ellipse (3.45). The other

vectorsm(t) are tangent to the ellipse (3.45) — see Fig.4. The vector of angular
momentumL is also tangent to this ellipse and belongs to the conic surface (3.44)
sincem(0) = L̂ . Now it is easy to understand the structure of turn-tensor (3.23).
First of all the vectorp in (3.23) must be chosen asL̂ = L/l. Really, if it is so, then

L · P = L · Q(ψL̂) · Q(ϑe) · Q(ϕn) = L · Q(ϑe) · Q(ϕn) (3.46)

and the angle of precessionψ(t) goes out from an energy integral (3.25). Thus an
energy will be conserved for any value of the angleψ. Angles of notationϑ and
angle of own rotationϕ are related by (3.25). The turn-tensorQT(ϕn) · QT(ϑe)
must transfer the vectorL up to coincidence with a vectorm(t) — see Fig.4. This
may be done by two steps — see Fig.5, where three ellipses are shown.

The ellipseADEFA is the cross-section of the cone (3.44) with the planez =√
1 − b2, i.e., it is an ellipse (3.45). The ellipseA1D1E1F1A1 is the cross-section

of the cone (3.44) with the planez = zmax =
√

1 − a2, i.e., it is an ellipse

x2

a2
+

y2

b2
1

= 1, b2
1 =

1 − a2

1 − b2
b2 > b2.

An ellipseAD1EF1A is ellipse (3.41). A vectorlm(t) belongs to the cone (3.44)
and intersects these ellipses. Let the pointC2 be a point of intersection of a vector
lm(t) with the ellipseAD1EF1A. Let us construct the cone with an apex0 and
with the circular cross-section of the radiusO1C2. The circleA ′C2D

′E ′F ′A ′ is the
cross-section of this circular cone with the planez = z∗, wherezmin < z∗ < zmax.
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Figure 5: Determination of the turn

Now we are able to realize the two steps mentioned above. In the first step we rotate
a vectorL by the angleϑ around the axise

e = d3 × L/|d3 × L | = (d3 × L)/

√
l2 − l23.

As a result the vectorL will become a vectorL ′,

L ′ = QT(ϑe) · L .

VectorL ′ belongs to the circular cone. In the second step we rotate vectorL ′ around
the axisd3. As a result of this rotation vectorL ′ will be sliding along the circular
cone up to coincidence with vectorlm(t),

lm(t) = QT(ϕd3) · L ′ = QT(ϕd3) · QT(ϑe) · L .

Thus the vectorn in (3.46) is the vectord3. Now the form of a turn-tensor is
determined,

P(t) = Q(ψL̂) · Q(ϑe) · Q(ϕd3). (3.47)

The anglesϑ andϕ are in a relation, which can be found as follows:

m(t) = L̂ · P(t) =

L̂ · Q(ϑe) · Q(ϕd3) =
1

sinα

(
sinϑ d3 + sin(α − ϑ)L̂ · Q(ϕd3)

)
, (3.48)
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where
sinα =

√
l2 − l23/l, cosα = l3/l, (lk ≡ L · dk). (3.49)

The coordinatesxm, ym, zm of vectorm can be defined from (3.48):

xm = sin(α−ϑ) cos(β−ϕ), ym = sin(α−ϑ) sin(β−ϕ), zm = cos(α−ϑ), (3.50)

where
sinβ = l2/

√
l2 − l23, cosβ = l1/

√
l2 − l23.

Making use of (3.43) and (3.50) we can write down

tan(β − ϕ) =
b

a
tanγ, cos(α − ϑ) =

√
1 − a2 cos2 γ − b2 sin2 γ. (3.51)

A two-parameter representation of a turn-tensor conserving energy is known. Let
us note that the conditionsϕ(0) = 0 andϑ(0) = 0 must be provided by the unique
value of angleγ0 = γ(0). Thus forγ0 there are two equations,

tanβ =
b

a
tanγ0, cosα =

√
1 − a2 cos2 γ0 − b2 sin2 γ0. (3.52)

It can be readily shown that these equations are compatible. It is only now we are
ready to solve equation (3.22). For this purpose it is convenient to rewrite equation
(3.22) in terms of the right vector of angular velocity and the vectorm(t). Making
use of the formula (3.4) and (3.47) we get

Ω(t) = PT · ω(t) = ϕ̇d3 + ϑ̇QT(ϕd3) · e+ ψ̇m, (m = PT · L̂).

The equation (3.45) takes the form

ϕ̇d3 + ϑ̇QT(ϕd3) · e+ ψ̇m = lΘ−1 · m. (3.53)

Let us take into account the identity

QT(ϕd3) · e =
1√

l2 − l23

(
d3 ×QT(ϕd3) · L

)
=

1

sin(α − ϑ)
d3 ×m.

Here the identity (3.10) was used. The equation (3.53) may be rewritten as

ϕ̇d3 +
ϑ̇

sin(α − ϑ)
d3 ×m + ψ̇m = lΘ−1 · m. (3.54)

This is the basic equation that we have to solve. The first integral of (3.54) is known.
It means that only two of the three scalar equations in (3.54) are independent. Pro-
jections of (3.54) on the vectorsd3 andm(t) give

ϕ̇ −

(
ψ̇ −

l

θ3

)
zm = 0, ϕ̇zm + ψ̇ =

h

l
; zm = m · d3 = cos(α − ϑ).
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It will be more useful to write down these equations in another form

ψ̇ =
l

θ3

+
hθ3 − l2

lθ3

1

1 − z2
m

> 0, ϕ̇ = −
hθ3 − l2

lθ3

zm

1 − z2
m

< 0. (3.55)

From the first expression of (3.51) follows

(1 − z2
m) ϕ̇ = −abγ̇.

Now the second equation from (3.55) takes the form

γ̇ = ω∗
√

1 − k2 sin2 γ > 0, (3.56)

where

ω∗ ≡ l

θ3

√
(1 − a2)

(θ3 − θ1)(θ3 − θ2)

θ1θ2

, k2 =
b2 − a2

1 − a2
< 1.

The initial condition for the angleγ follows from (3.52). The solution of equa-
tion (3.56) may be readily constructed in terms of elliptical functions. However,
the qualitative analysis does not require any integration. Let us consider Fig.4.
The form of the ellipseADEFA is determined by a body only — see (3.42). Ini-
tial conditions determine a dilatation of the ellipse. Ifhθ3 − l2 = 0, then the
ellipse is a point (a = b = 0) and we have the permanent rotation around the axis
d3 = D3(t) : ϕ = ϑ = 0, ψ̇ = l/θ3. When the quantityhθ3 − l2 is increasing, then
the semi-axisa andb grow in the same rate. The total turn of a body is the com-
position of two turns, the first of which is defined by a turn-tensorQ(ϑe) · Q(ϕd3)

and the second one is determined by a turn-tensorQ(ψL̂). The meaning of the first
turn is: the body is rotating in such a way, that the ellipseADEFA, which is fixed
with respect to the body, is turning in its plane touching to the vectorL , which is
fixed in the space. The turn goes in the direction of a clock-wise movement since
ϕ̇ < 0 and at the same time the body is turning around a fixed vectord3 × L in
order to provide the point of contact with the vectorL . The angle between vectors
L andD3(t) is changing in time. The speed of this rotation is changing too: it is
maximal, when the point of contact coincides with the end of the small diameter of
the ellipse and it is minimal, when the point of a contact coincides with the end of
the big diameter of the ellipse. In the position shown on Fig.4 the angular velocity
of the first turn is decreasing and takes the minimal value, when the pointA of the
ellipse will touch the vectorL . After that the angular velocity will be increasing and
will take the maximal value when the pointF of the ellipse will touch the vectorL
and so on. From (3.56) it follows that

ω∗
√

1 − k2 ≤ γ̇(t) ≤ ω∗.
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The second turn, called precession, is superposed on the turn described above. It is
a rotation around the vectorL . The angular velocity of rotation, i.e.̇ψ, is positive
and changes: it is maximal, whenzm = zmax; it is minimal, whenzm = zmin. After
the determination of the functionγ(t) all characteristics of the rotation of a body
can be expressed through this function. As an example let us show the formula for
an absolute value of angular velocity

|ω(t)|2 = |Ω(t)|2 =
l2

θ2
3

+
hθ3 − l2

θ2
3

(
θ1 + θ3

θ1

−
θ3(θ2 − θ1)

θ1θ2

sin2 γ

)
.

As a conclusion of this section let us remind that the solution of equation (3.56)
can be found in the form of the series

γ(t) = γ0 + ωat +

∞∑

n=1

sin(2nωat)

n cosh(nπK ′/K)
,

where

ωa =
πω∗
2K

, K =

π
2∫

0

dγ√
1 − k2 sin2 γ

, K ′ =

π
2∫

0

dγ√
1 − (1 − k2) sin2 γ

.

The convergence of the series is sufficiently good if0 ≤ k2 ≤ 0.98, since even for
k2 = 0.98 we haveK ′/K = 0.4707.

3.2.5 Rotation of the body in the caseσ < 0

The only important difference of this case to that described above is that the first
rotation of the body is going around the axisd1 instead ofd3. If σ = l2 − hθ2 < 0,
then the coefficient ofy2

m in equation (3.31) is negative. Eliminating the coordinate
x2

m = 1 − y2
m − z2

m from (3.31) we will get

y2
m

c2
+

z2
m

d2
= 1, c2 =

θ2(l
2 − hθ1)

l2(θ2 − θ1)
, d2 =

θ3(l
2 − hθ1)

l2(θ3 − θ1)
,

d2

c2
< 1.

Let us introduce the angleγ(t) such that

xm =

√
1 − d2 cos2 γ − c2 sin2 γ, ym = c sinγ, zm = d cosγ. (3.57)

The turn-tensorP(t) can be presented in the form

P(t) = Q(ψL̂) · Q(ϑe) · Q(ϕd1), e = (d1 × L)/

√
l2 − l21. (3.58)
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The anglesϑ andϕ here are related. In order to find out this relation it is necessary
to express the vectorm(t) = PT · L̂ in terms of the anglesϑ andϕ,

m(t) =
1

sinα

(
sinϑ d1 + sin(α − ϑ)L̂ · Q(ϕd1)

)
,

where
sinα =

√
l2 − l21 / l, cosα = l1/l.

The projections ofm(t) on the unit vectorsdk are

xm = cos(α − ϑ), ym = sin(α − ϑ) sin(β + ϕ),

zm = sin(α − ϑ) cos(β + ϕ), (3.59)

where
sinβ = l2/

√
l2 − l21, cosβ = l3/

√
l2 − l21.

From (3.57) and (3.59) follows

tan(β + ϕ) =
c

d
tanγ, cos(α − ϑ) =

√
1 − d2 cos2 γ − c2 sin2 γ. (3.60)

The right vector of an angular velocity corresponding to the turn-tensor (3.58) is
calculated from the formula

Ω(t) = ϕ̇d1 +
ϑ̇

sin(α − ϑ)
d1 ×m + ψ̇m.

The equation (3.22) takes the form

ϕ̇d1 +
ϑ̇

sin(α − ϑ)
d1 ×m + ψ̇m = lΘ−1 · m(t).

From this equation it follows that

ϕ̇ +

(
ψ̇ −

l

θ1

)
xm = 0, ϕ̇xm + ψ̇ =

h

l

or, in another form,

ψ̇ =
l

θ1

−
l2 − hθ1

lθ1

1

1 − x2
m

> 0, ϕ̇ =
l2 − hθ1

lθ1

xm

1 − x2
m

> 0. (3.61)

The positiveness oḟϕ is obvious, and the positiveness ofψ̇ follows from the in-
equalities

ψ̇ ≥ l

θ1

−
l2 − hθ1

lθ1

1

1 − (x2
m)max

, 1 − x2
m = d2 cos2 γ + c2 sin2 γ =

d2 + (c2 − d2) sin2 γ ⇒ ψ̇ ≥ l

θ1

−
l2 − hθ1

lθ1

1

d2
=

l

θ3

> 0.
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The first equation from (3.60) gives

(1 − x2
m) ϕ̇ = cd γ̇.

Substituting this expression in the second equation of (3.61) we get

γ̇(t) = ω∗
√

1 − k2 sin2 γ,

where

ω∗ ≡ l

θ1

√
(1 − d2)

(θ2 − θ1)(θ3 − θ1)

θ2θ3

, k2 =
c2 − d2

1 − d2
< 1.

The initial condition for the functionγ(t) follows from (3.60) and conditions
ϑ(0) = 0, ϕ(0) = 0:

tanγ0 =
d

c
tanβ, γ0 ≡ γ(0). (3.62)

If the functionγ(t) is known then all characteristics of the rotation of a body can
be found. For example,

|ω(t)|2 =
l2

θ2
1

−
l2 − hθ1

θ2
1

(
θ1 + θ3

θ3

+
θ1(θ3 − θ2)

θ2θ3

sin2 γ

)
.

From a formal point of view the casesσ > 0 andσ < 0 are almost the same.
However, the rotation of the body in the caseσ > 0 differ from that one in the case
σ < 0 significantly.

3.2.6 Discussion

In order to understand and predict the behavior of a body it is not necessary to solve
the problem as a whole. It is sufficient to know the form of the turn-tensor of the
body

P(t) = Q(ψL̂) · Q(ϑe) · Q(ϕd1), e = (d1 × L)/

√
l2 − l21, σ < 0; (3.63)

P(t) = Q(ψL̂) · Q(ϑe), e = (d2 × L)/

√
l2 − l22, σ = 0; (3.64)

P(t) = Q(ψL̂) · Q(ϑe) · Q(ϕd3), e = (d3 × L)/

√
l2 − l23, σ > 0. (3.65)

The angles of a precession,ψ, and own rotation,ϕ, are varying monotonically in
all cases (̇ϕ = 0 if σ = 0). The variation of the angle of nutation,ϑ, for σ > 0

or σ < 0 has an oscillating nature. The rotations of a body in the caseσ = 0 are
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unstable. The rotations of a body in the casesσ > 0 andσ < 0 are stable. However,
such a conclusion is correct only in linear approximation. If the value ofσ is very
small (0 < |σ| ≤ ε ¿ 1), then the analysis of stability in a linear approximation
becomes useless from the practical point of view. Let us consider the following
initial conditions (ε > 0)

l1 =
l√

1 + (
√

2 + ε)2

, l2 = 0, l3 =
(
√

2 + ε) l√
1 + (

√
2 + ε)2

, σ > 0; (3.66)

l1 =
l√

1 + (
√

2 − ε)2

, l2 = 0, l3 =
(
√

2 − ε) l√
1 + (

√
2 − ε)2

, σ < 0. (3.67)

If the value ofε > 0 is very small, then the conditions (3.66) and (3.67) are very
close. Nevertheless the rotations of a body in these cases are essentially different.
Moreover, it quite well is possible for the body to jump from the “stable” solution
(3.63) (corresponding to the conditions (3.66)) to another “stable” solution (3.65)
which corresponds to conditions (3.67). In the first case the body was rotating
around the axis with minimal moment of inertia, but after such a jump the body
will be rotating around the axis with maximal moment of inertia. For this only very
small perturbations acting on a body are needed. Thus if we want the body to have
a stable rotation in reality, we have to avoid the case of a small value ofσ.

3.3 Classical solution

The classical solution is constructed in two steps. In the first step the right angular
velocity is determined. Then, in a second step, the Euler angles can be found from
the solution of the right Darboux problem.

The angular momentum vectorL had been expressed through the right angular
velocityΩ(t)

L = P · Θ · PT · ω = P · Θ · Ω = const. (3.68)

Let us write down the two identities

(A · a)× (A · b) = (detA) (AT)−1 · (a× b),

P · (a× b) = (P · a)× (P · b), (3.69)

wherea, b are arbitrary vectors,A is a nonsingular second rank tensor,P is a turn-
tensor. If we differentiate (3.68) with respect to time, then we get — see, for exam-
ple, Arnold V.I. [1].

L̇ = P · (Θ · Ω̇ + Ω×Θ · Ω) = 0 ⇒ Θ · Ω̇ + Ω×Θ · Ω = 0. (3.70)
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These are the classical Euler equations. The tensor of inertia,Θ, in (3.70) can be
represented in any form (any basis). Making use of (3.69) equation (3.70) can be
written in the form

Ω̇ +
1

θ1θ2θ3

(Θ · Ω)× (Θ2 · Ω) = 0. (3.71)

This equation was derived by L. Silberstein [7]. The merit of equations (3.70) and
(3.71) is that they do not contain the turns. If all eigenvalues ofΘ are different, and
the vectorΩ(t) is not an eigenvector ofΘ, then the vectorsΩ(t), Θ · Ω(t),

Θ2 · Ω(t) are linearly independent. The equation (3.71), multiplied scalarly at first
by Θ · Ω and than byΘ2 · Ω, gives two first integrals

h = 2K = Ω · Θ · Ω = const, l2 = L · L = Ω · Θ2 · Ω = const. (3.72)

Besides, equation (3.71), multiplied scalarly by the vectorΩ, gives the equation for
Ω2 = Ω · Ω

(Ω2)̇ = 2AΩ1Ω2Ω3, A =
(θ3 − θ1)(θ3 − θ2)(θ2 − θ1)

θ1θ2θ3

> 0, (3.73)

wheredk are eigenvectors ofΘ andΩk = Ω · dk.
Equation (3.73) shows, that a rotation of a body with constant absolute value

of angular velocity,Ω = |Ω(t)|, is possible only in two cases: a) for permanent
rotations, when only oneΩk is not zero, i.e.,Ω is eigenvector ofΘ; and b) if two
or three eigenvalue ofΘ are the same. Integrals (3.72) hold, if we accept

Ω2
1 = Ω2

10 + α(Ω2 − Ω2
0), Ω2

2 = Ω2
20 − β(Ω2 − Ω2

0),

Ω2
3 = Ω2

30 + γ(Ω2 − Ω2
0), (3.74)

where

α =
θ2 − θ1

Aθ3

, β =
θ3 − θ1

Aθ2

, γ =
θ3 − θ2

Aθ1

, Ω0 ≡ Ω
∣∣∣
t=0

.

Substituting (3.74) into (3.73) we get the equation for the quantityΩ. The solu-
tion of this equation can be found in terms of elliptic functions — see [8].

Up to here the investigation was a standard one. Now we have to consider the
initial conditions for the right angular velocityΩ(t). Often it is supposed that
the initial condition forΩ(t) does not depend on the initial position of the body.
However, it is not so. At the instantt = 0 we know the value of the left angular
velocityω(0) = ω0, i.e., we know true angular velocity. The relation (3.4) gives

Ω(0) ≡ Ω0 = PT
0 · ω0, P0 ≡ P(0).

110



If we choose the initial position of the body as a reference position, then we will get
P(0) = E. In such a case the vectorΩ(t) will contain three arbitrary parameters
(vectorω0). If the reference position is chosen a priory and does not coincide with
the initial position of the body, thenP0 6= E. In this case the vectorΩ(t) depends
on six arbitrary parameters (vectorω0 and turn-tensorP0). In order to find out the
turn-tensorP(t) we have to solve the right Darboux problem

Ṗ(t) = P(t)×Ω(t), P
∣∣∣
t=0

= P0. (3.75)

The solution of this problem does not add the new arbitrary parameters. Thus the
general solution, for example the left (true) vector of angular velocity,ω(t), will
contain only six arbitrary parameters and all of them are contained in the vector
Ω(t).

Let us consider the solution of problem (3.75). We shall give two different ap-
proaches to the solution. The first approach is based on the representation of the
turn-tensor in terms of Eulerian angles and contains the classical solution as a par-
ticular case. The second approach is new.

Let us represent the turn-tensorP(t) in terms of Eulerian angles — see the in-
troduction.

P(t) = Q(ψe3) · Q(ϑe1) · Q(ϕe3),

where

e3 = L̂ ≡ L/l, e2 = e3 × e1, e1 (e1 · L = 0, e2 · ω0 = 0)

are the unit vectors, the vectore1 is placed in the plane spanned from the vectorsL
andω0.

In fact, we do not need to solve the Darboux problem (3.75) because it had been
partly solved. Indeed, multiplying (3.75) by the vectorL from the left we get

(L · P)̇ = (L · P)×Ω ⇒ Θ · Ω̇ = (Θ · Ω)×Ω,

where the expression (3.68) was used. It means that we know the vectorL · P =

Θ · Ω,

Θ · Ω = PT · L = l sinϑ (sinϕ e1 + cosϕ e2) + l cosϑ e3. (3.76)

From (3.76) follows

l sinϑ sinϕ = e1·Θ·Ω, l sinϑ cosϕ = e2·Θ·Ω, l cosϑ = e3·Θ·Ω, (3.77)

or
tanϕ = (e1 · Θ · Ω)/(e2 · Θ · Ω), cosϑ = (e3 · Θ · Ω)/l. (3.78)
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In order to find the angle of precession,ψ, it is necessary to use equation (3.75),
which can be rewritten in the form

Ω(t) = ϕ̇e3 + ϑ̇(cosϕ e1 − sinϕ e2) + ψ̇(Θ · Ω)/l. (3.79)

From this equation it follows

ψ̇ =
h − l cosϑΩ3

l2 sin2 ϑ
, ψ

∣∣∣
t=0

= ψ0, (Ωk = Ω · ek). (3.80)

Up to here we do not fix the reference position of the body. Let us consider two
cases of a choice of a reference position.

A. The reference position is an initial position of the body. In this case we
have

P0 = E ⇒ ϑ
∣∣∣
t=0

= 0, ϕ0 + ψ0 = 0, ω0 = Ω0, Θ · Ω0 = L . (3.81)

Whent → 0 the quantitiese1 · Θ · Ω ande2 · Θ · Ω tends to zero, bute3 · Θ · Ω/l

tends to 1. We see that equations (3.77) come to identities whent → 0. From (3.78)
it follows thatϑ → 0 whent → 0. However, it is very difficult to find out the value
ϕ0 from equations (3.78). Let us consider equation (3.79) at the instantt = 0,

ω0 = Ω0 = (ϕ̇0 + ψ̇0)e3 + ϑ̇0(cosϕ0 e1 − sinϕ0 e2).

From this equation we see thatϕ0 = 0, sincee2 · ω0 = 0 andϑ̇0 6= 0 in the general
case. From (3.81) it follows thatψ0 = 0. This means that the numerator in (3.78)
tends to zero more quickly than the denominator. It is easy to see that the numerator
in (3.80) has a zero of order 2 whent → 0. Really, we have

h = ω · L = L · P · Ω = l (cosϑΩ3 + sinϑ (cosϕΩ2 + sinϕΩ1))

and
Ω20 = Ω0 · e2 = ω0 · e2 = 0.

Thus we have the expression (3.78) and (3.80) in order to find Eulerian anglesψ, ϑ,
andϕ. They are not good for practical calculation, but they can be used.

B. Let a reference position of the body be a position,when the eigenvector
d3 of the tensorΘ coincides with the vectorL . This case is presented in the most
of books — see, for example, Macmillan [6] and Suslov [8]. In this case we have
ek = dk. Equations (3.77), (3.78) take the form

l sinϑ sinϕ = θ1Ω1, l sinϑ cosϕ = θ2Ω2, l cosϑ = θ3Ω3; (3.82)

tanϕ = (θ1Ω1)/(θ2Ω2), cosϑ = (θ3Ω3)/l. (3.83)
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Here a lot of questions arises. First of all, it is difficult to find out the angleϕ.
Really, from equation (3.73) it follows that the quantitiesΩ1 andΩ2 must be zero
at the some instants. It means that the functionsψ(t) andϕ(t) will be discontinuous
functions of time. The same fact follows from equations (3.82). Indeed, if we write
down (3.82) at the instantt = 0, then we must get the identities with respect to six
parametersψ0, ϕ0, ϑ0, ω0. Is it really so? Nobody shows it. Anyway one must be
very careful to use expression (3.83) and equation (3.80).

Let us consider another way of constructing the turn-tensorP(t). In this ap-
proach we do not use Eulerian angles. The vectorm(t) = Θ · Ω/l is supposed to
be known. The turn-tensorP(t) is represented in the form

P(t) = Q(ψL̂) · Q(αb), b = m× L̂/|m× L̂ | ≡ (m× L̂)/| sinα|, (3.84)

where
cosα = m(t) · L̂ = Ω(t) · Θ2 · Ω0/l2, α(0) = 0. (3.85)

The angleα(t) is known. It can be readily shown that the inequality

0 ≤ α(t) < π

holds good. Let the vectorω∗(t) be the left angular velocity of the turn-tensor
Q(αb),

ω∗(t) = α̇(t)b(t) + sinα ḃ + (1 − cosα)b× ḃ.

The left angular velocityω(t) of the turn-tensor (3.84) is equal to

ω(t) = ψ̇L̂ + Q(ψL̂) · ω∗. (3.86)

Let us remind thatω · L = h. From equation (3.86) it follows

ψ̇ =
h

l
− ω∗ · L̂ =

h + Ω(t) · L
l(1 + cosα)

, ψ
∣∣∣
t=0

= ψ0. (3.87)

The next chain of equalities,

ω∗ · L = (1 − cosα)(b× ḃ) · L =
1 − cosα

sinα

(
L̂ × (m× L̂)

) · ḃ =

=
1 − cosα

sinα
(m − cosαL̂) · ḃ =

1 − cosα
sinα

m · ḃ = −
1 − cosα

sinα
ṁ · b =

=
1 − cosα

sinα
(Ω×m) · b =

1 − cosα

sin2 α
(Ω×m) · (m× L̂) =

h cosα − Ω · L
l(1 + cosα)

must be used in order to get equation (3.87). The solution (3.84), (3.85) and (3.87)
contains six arbitrary parameters. The anglesα(t) andψ(t) are continuous function
of time.
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3.4 Final remarks

The success of the solution of many problems in dynamics depends on the appro-
priate choice of the turn-tensor representation. There exist many different ways.
The most popular way is the representation of the turn-tensor in terms of Eulerian
angles. Our own experience shows that in most cases Eulerian angles are not advan-
tageous tools. The only exception is the case when the angle of nutation is small.
In this case the application of Eulerian angles leads to very simple solutions. Of
course, we are able to use another sets of parameters instead of Eulerian angles.
The main point is in which way we will do it. If we make our choice a priory we
must be lucky to find a successful solution. What we wanted to show is the fact,
that the set of basic parameters must be chosen in the process of the solving the
task. Especially for this aim we need the theorems like the representation theorem
(3.12). The turn-tensor is a necessary tool in order to keep the freedom of choice of
the basic set of parameters.

The Euler – Poinsot problem is the simplest case in dynamics of rigid bodies. In
the most cases we have no chances to find something like the first integrals. Does
it mean that the turn-tensor is useless in such cases? We are quite sure that it is
not so. As an example we can point out one important (but not most important)
case. In many problems of continuum mechanics of multipolar media, dynamics
of gyroscopic system, dynamics of centrifuges and ultracentrifuges and so on, we
deal with the case of rotation under small angles of nutation. If we use conventional
methods then we will get nonlinear equations for arbitrary small angles of nutation
if the other Eulerian angles are not small. Application of turn-tensor and identities
like (3.9) and (3.10) allows to simplify the task significantly. Let us briefly show
the way how to do it. Let us accept representation (3.15) of the turn-tensor in terms
of Eulerian angles,

P(t) = Q (ψ(t)m) · Q (ϑ(t)e) · Q (ϕ(t)m) , e · m = 0, |ϑ(t)| << 1. (3.88)

If |ϑ(t)| is small then we can use the expression

Q(ϑe) = E + ϑe× E + O(ϑ3)

and rewrite (3.88) in the form

P(t) = (E + γ(t)× E) · Q(β(t)m), (3.89)

where

β(t) = ϕ(t) + ψ(t), γ(t) = ϑ(t)Q(ψ(t)m) · e, m · γ = 0.
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Usually the quantitiesψ, ϕ, β are not small but the vectorγ(t) is small since
|γ(t)| = |ϑ(t)| << 1. From (3.88) and (3.89) follows

ω = β̇m + γ̇ + β̇γ×m.

After that it is possible to linearize the basic equations with respect to the small
vectorγ and to construct a solution. Let us underline that linear equation can be
derived only for the vectorγ(t) rather than for a small angleϑ(t). The equation for
ϑ(t) will be always nonlinear. If we know the vectorγ(t) it is easy to find the angle
of precession,ψ(t),

ψ̇(t) = m · (γ× γ̇) /(γ · γ).

The angleϕ(t) can be found ifψ andβ are known. Usuallyβ(t) can be found
without any difficulty.
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