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The problem of the motion of a heavy symmetrical rigid body on an elastic foundation

is considered. It is supposed the center of mass of the body is near its axis of symmetry.

An elastic foundation is simulated by the inertial elastic plate. Non-stationary regime of the

motion of the rigid body is studied. It is shown that the problem can be reduced to the

ordinary integro-differential equation.

Introduction.

The problem of the motion of a system, which consists of a heavy symmetrical rigid body

and a ring elastic plate, is considered. The external contour of the plate is fixed. The

internal contour of the plate is connected to the rigid body by a rotating joint so, that

the body can freely rotate around its axis of symmetry. The center of mass of the body

is near its axis of symmetry. The moment of an electro-motor of a restricted power and

a dissipative moment act on the body. The angle of nutation of the body is supposed to

be small. Therefore, the motion of the plate can be described by the linear plate theory.

It is known, that this problem can be reduced to the system of the linear differential

partial equations. If stationary regime of the motion of the system is considered, then

the problem can be easily solved by the Fourier method. If non-stationary regime of the

motion of the system is studied, then the considered problem becomes more difficult,

because coefficients of one of the boundary equations depend on time. In this case the

separation of variables is impossible. An alternative method of solution of the considered

problem is proposed below. This method allows to reduce the problem to the ordinary

integro-differential equation.

1. The motion of a rigid body on an elastic plate. Case 1: a rigid body

has a fixed point.

Let us consider a symmetrical rigid body, the center of mass of which is near its axis of

symmetry, on an elastic plate (see Figure 1). The rigid body has a fixed point, which

coincides with the center of the plate. The motion of the plate is described by the

Reissner’s type plate theory which takes into account the rotation inertia and the cross

shear strain. The equations of the Reissner’s type plate theory have the form [1], [2]

Here — the lateral deflection, — the rotation angles vector, — the cross forces

vector, — the moments tensor. The boundary conditions on the external contour of

the plate are
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Fig. 1. A rigid body on an elastic plate. The

body has a fixed point.

The boundary conditions on the internal

contour of the plate are depend on the

motion of the rigid body. The rotation of

the body is described by the turn-tensor

[3], [4]

The turn-tensor determines the

rotation of the body around its axis of

symmetry and the turn-tensor

determines the nutation vibration of the

body. Since the angle of nutation is

suppose to be small, the turn-tensor

can be represented as

The angular velocity vector is calculated by the formula

Taking into account the facts, that the rigid body has a fixed point and the internal contour

of the plate is connected to the rigid body by a rotating joint so, that the body can freely

rotate around its axis of symmetry, it is to show, that conditions of the conjunction of the

rigid body and the plate have the following form

Here — the unit vector of polar coordinate system. Eqs. (4.1) allow to obtain the

kinematics boundary condition on the internal contour of the plate

Using the first and the second laws of dynamics by Euler, we obtain equations of the

motion of the rigid body

Here — mass of the body, — the position vector of the mass center of the body,

— the force of reaction at the fixed point, — the tensor of inertia of the body,

calculated with respect to the fixed point, n — the unit vector, directed along the axis of

symmetry of the body in the actual position, — the moment of an electro-motor

of a restricted power ( , if , then is the following moment, if
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, then has a constant direction), — the dissipative moment, —

the elastic moment acting on the body by the plate. Moment is calculated by the

formula

where and are polar coordinates. Substituting (2.9) into (2.8) and using the

relations (3.3) – (4.1), we obtain the differential equation in terms the angle and

variables, describing the stress strain state of a plate. Projecting this equation on the

plane, orthogonal the vector , and on the axis, parallel the vector , we obtain the

boundary condition on the internal contour of the plate and the differential equation in

terms the angle . Solution of the equation in terms the angle is

The boundary condition on the internal contour of the plate has the form

Thus equations (3.1), (3.2), (4.2), (2.10), (2.11) give the complete formulation of the

problem of the motion of a rigid body on an elastic inertial plate. If stationary regime

of the motion ( ) is considered, then the problem can be easily solved by the

Fourier method. If non-stationary regime of the motion of the system is studied, then the

problem becomes more difficult, because coefficients of eq. (2.11) depend on time. In

this case the separation of variables is impossible and the Fourier method can not be used.

Below the considered problem is solved by an alternative method, which was proposed

in [5]. This method allows to reduce the problem to the ordinary integro-differential

equation.

2. Method of the solution of the problem.

Let us look for solution of the problem in the form

The first terms of the functions (2.12) satisfy the kinematics boundary conditions (3.2),

(4.2) and the functions , , are the serieses of the eigenfunctions of the clamped
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plate

The functions , and in the expressions (2.12), (2.13) are unknown

functions. Substituting the expressions (2.12), (2.13) into the dynamics boundary condition

(2.11), we obtain

Substituting the expressions (2.12), (2.13) into the equation of the motion of the plate

(3.1) and using well known relations of orthogonality of eigenfunctions of a clamped plate,

we obtain the following differential equations in ,

It is easy to see, that coefficients ( ) do not depend on the motion of

the rigid body. Coefficients essentially depend on the motion of the rigid body.

These coefficients can be found as a result of solution of the system of the differential

equations (2.14), (2.15) in , . Let us note, that solution of (2.15) has the
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form

where are the eigenfrequencies of a clamped plate and , are constants,

which can be found by satisfying the initial conditions. Let us substitute expression (2.18)

into eq. (2.14). We obtain the integro-differential equation in .

Let us note, that eq. (2.19) is like the integro-differential equation which was obtained

in [5], where the problem of the motion of a rigid body on an elastic inertial rod was

considered. Analysis of the equation can be found in [5].

3. The motion of a rigid body on an elastic plate. Case 2: a rigid body

has no fixed points.

Fig. 2. A rigid body on an elastic plate. The

body has no fixed points.

Let us consider a symmetrical rigid

body the center of mass of which is near

its axis of symmetry. The body has no

fixed points (see Figure 2). Conditions of

the conjunction of the rigid body and the

plate has the following form

where is the displacement of the point

of intersection of the axis of symmetry of

the rigid body and the plane of internal

contour of the plate. Using the first and

the second laws of dynamics by Euler, we

obtain equations of the motion of the rigid

APM’ 2001 Saint-Petersburg (Repino), June 21–30, 2001 361



body

The boundary conditions on the internal contour of plate have the form

where the angle is calculated according to formula (2.10). Thus eqs. (3.1), (3.2),

(2.10), (2.22) give the complete formulation of the problem.

Let us look for solution of the problem in the form

Here the functions , , are the serieses of the eigenfunctions of a clamped

plate (see eq. (2.13)). Substituting expressions (2.13), (2.23) into equations of the motion

of the plate (3.1) and the dynamics boundary condition (2.22), we obtain the following

system of the differential equations in ,
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Here the constants , , , are calculated according to the formulae (2.14),

(2.15) and the constants , , , have the form

It is easy to see, that eqs. (3.5) in the functions and do not differ from

the eqs. (2.18), (2.19), which were obtained in the case, when the rigid body had a fixed

point. The functions , are found as follows

Let us note, that the integro-differential equation (3.6) in the function is like the

eq. (2.19) in the function , but the eq. (3.6) is more simple than eq. (2.19), as it

does not depend on the motion of the rigid body.
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