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A General Model of Rigid Body Oscillator∗

Abstract

The present discourse develops a new model named by a rigid body oscillator.
In Eulerian mechanics this model plays the same role as the model of nonlinear
oscillator in Newtonian mechanics. The importance of the introduction of the rigid
body oscillator, i.e. a rigid body oscillator on an elastic foundation of general kind,
into consideration was pointed out by many scientists. However the problem is not
formalized up to now. In the paper all necessary for a mathematical description
concepts are introduced. Some of them are new. The equations of motion are rep-
resented in unusual for dynamics of rigid body form, which has a clearly expressed
simple structure but contain the nonlinearity of a complex kind. These equations
give the very interesting object for the theory of nonlinear oscillations. The so-
lutions of some problems are given. For the simplest case the exact solution was
found by an essentially new method of an integration of basic equations.

1 Introduction

The nonlinear (linear) oscillator is the most important model of classical physics. An
investigation of many physical phenomenons and a development of many methods of
nonlinear mechanics had arisen in the science due to this model. At the same time it
was recognized the necessity of construction of models with new properties. Especially
it was important in quantum mechanics, where many authors pointed out that a new
model must be something like a rigid body on an elastic foundation. However, such
model was not created up to now. Why? The full answer on this question will be found
by historians later.

A rigid body on an elastic foundation will be called the rigid body oscillator in what
follows. A general model of such object can be used in many cases, for example, in
mechanics of continuum multipolar media. For the construction of model the three new
elements are needed: the vector of turn, the integrating tensor, and the potential torque.
Let us briefly discuss these concepts.

An unusual situation takes place with the vector of turn. From the one side, the
well-known theorem of Euler proves that any turn of the body can be realized as the
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turn around some unit vector m by a certain angle θ. Thus the turn can be described
by the vector θ = θm. This fact can be found in many books on mechanics. From the
other side the same books claim that the vector θm is not a vector, and a description of
a turn in terms of vector is impossible. May be by this reason a vector of turn has no
applications in conventional dynamics of rigid body. However namely the vector of turn
plays the main role in dynamics of rigid body on an elastic foundation.

Integrating tensor. In classical mechanics the linear differential form vdt is the
total differential of the vector of position vdt = dR. It is not true for spinor movements.
If the vector ω is a vector of angular velocity, then the linear differential form ωdt is
not a total differential of the vector of turn. However, it can be proved that there exists
a tensor Z that transforms the linear differential form ωdt into the total differential
dθ of the vector of turn θ. This fact was established in the work [2]. The integrating
tensor Z plays the decisive role for an introduction of a potential torque. The latter
expresses an action of the elastic foundation on the rigid body. Thus it is an essential
element of a general model of rigid body oscillator.

The basic equations of dynamics of rigid body oscillator contain a strong nonlinearity
but their form is rather simple. These equations give the very interesting object for
methods of nonlinear mechanics. In the paper some simple examples are considering.
In particular a new method of integration of the basic equations is given in the case of
simplest model.

Author hopes that the clarity of the mathematical formulas in the paper will be able
to compensate a helplessness of its language of words.

2 Mathematical preliminaries

In the section certain aspects of the tensor of turn and the vector of turn will be briefly
presented. Some initial definitions can be found in the paper [1].

2.1 Vector of turn

A vector of turn is the very old concept. It is difficult to find another concept, for which
there exist so many inconsistent propositions as for the vector of turn. The latter plays the
main role in the present work. Because of this it seems to be necessary to give the strict
introduction of the vector of turn and to describe its basic properties. The introduction
of the vector of turn is determined by the well-known statement of Euler: any turn can be
represented as the turn around some axis n by the certain angle θ. The vector θn, |n|=1,
is called the vector of turn. Note that two different mathematical concepts correspond
to one physical (or geometrical) idea of turn. One of them is described by a tensor of
turn and another is described by a vector of turn. Of course both of them are connected
by a unique manner. For the turn-tensor we shall use the notation [1]

Q (θn) = (1 − cosθ)n ⊗ n + cosθE + sin θn× E. (1)

An action of the tensor Q (θn) on the vector a can be expressed in the form

a′ = Q (θn) · a = (a · n)n + cosθ (a − a · nn) + sin θn× a. (2)
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If n× a = 0, then a′ = a. If a · n = 0, then we have

a′ = cosθa + sin θn × a.

This means that vector a′ is the vector a turned around the vector n by the angle θ.
Representation (1) can be rewritten in another form

Q (θ) = E +
sin θ

θ
R +

1 − cosθ

θ2
R2 = expR, (3)

where
R = θ × E, θ = |θ| . (4)

The vector θ in (3), (4) is called the vector of turn. Note that there exists a little
difference between representations (1) and (3) . In (1) the quantity θ is the angle of turn
and can be both positive and negative. In (3) the quantity θ is the modulus of the
vector of turn, i.e. the modulus of the angle of turn. such interpretation is possible since,
for example, sin θ/θ = sin |θ| / |θ|. As a rule, representation (3) is more convenient for
applications then expression (1). Let us consider a superposition of two turns

Q (θ) = Q (ϕ) ·Q (ψ) . (5)

The vector of total turn θ is connected with the vectors of turn ϕ and ψ by the
formulas

1 + 2 cos θ = cosϕ + cosψ + cosϕ cosψ−

−2
sin ϕ

ϕ

sin ψ

ψ
ϕ · ψ +

(1 − cosϕ)

ϕ2

(1 − cosψ)

ψ2
(ϕ · ψ)

2
, (6)

2
sin θ

θ
θ =

[
sin ϕ

ϕ
(1 + cosψ) −

(1 − cosϕ)

ϕ2

sin ψ

ψ
ϕ · ψ

]
ϕ + (7)

+

[
sin ψ

ψ
(1 + cosϕ) −

(1 − cosψ)

ψ2

sin ϕ

ϕ
ϕ · ψ

]
ψ +

+

[
sin ϕ sin ψ

ϕψ
−

(1 − cosϕ)

ϕ2

(1 − cosψ)

ψ2
ϕ · ψ

]
ϕ × ψ.

Note that from expressions (3), (4) it follows

R · θ = 0, Q (θ) · θ = θ. (8)

2.2 Integrating tensor

The vector of turn θ(t) plays for spinor movements the same role as the vector of position
R(t) for translation movements. In the latter case the translation velocity v can be found
by means of simplest formula v = Ṙ(t). This means that the linear form vdt is the
total differential of the vector of position. For spinor movements the situation is more
complicated, since the linear form ωdt, where ω is the vector of angular velocity, is not
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the total differential of the vector of turn θ. Thus it is necessary to find an integrating
factor that transforms the linear form ωdt into the total differential of vector of turn
dθ. For this end let us consider the left Poisson equation [1]

Q̇ (θ) = ω × Q (θ) , ḟ ≡ df/dt. (9)

This equation for the tensor of turn Q (θ) is equivalent to a system of nine scalar equa-
tions but only three of them are independent. In order to find these independent equa-
tions it is possible to substitute expression (3) into equation (9). After some transforma-
tions the next equation can be derived

θ̇ (t) = Z (θ) · ω (t) , (10)

where
Z (θ) = E −

1

2
R +

1 − g

θ2
R2, g =

θ sin θ

2 (1 − cosθ)
. (11)

The tensor Z (θ) will be called the integrating tensor in what follows. The nonsingular
tensor Z has the determinant

detZ (θ) = θ2/2 (1 − cosθ) �= 0.

The integrating tensor has a number useful properties. Let us describe some of them.
First of all, the tensor Z (θ) is an isotropic function of the vector of turn θ. This means
that

Z (S · θ) = S · Z (θ) · ST , ∀S : S · ST = E, detS = 1. (12)

If S = Q (θ), then from (12) and (8) it follows

Z (θ) ·Q (θ) = Q (θ) · Z (θ) .

Besides, it can be checked the identity

ZT (θ) = Q (θ) · Z (θ) = Z (θ) ·Q (θ) . (13)

For the right angular velocity Ω = QT (θ) · ω — see [1] — from expressions (10) and
(13) it follows

θ̇ (t) = ZT (θ) · Ω (t) . (14)

This equation is equivalent to the right Poisson equation [1]. In the explicit form equa-
tions (10) and (14) can be rewritten by such manner

θ̇ = ω −
1

2
θ × ω +

1 − g

θ2
θ × (θ × ω) , θ |t=0= θ0, (15)

θ̇ = Ω +
1

2
θ × Ω +

1 − g

θ2
θ × (θ × Ω) , θ |t=0= θ0. (16)

Problem (15) is the left Darboux problem[1]. If the left angular velocity is known, then
the vector of turn (and therefore the turn-tensor) can be found as the solution of problem
(15). It is much more simple task (at least for numerical analysis) then a solution of the
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conventional Riccati equation. The same can be said with respect to the right Darboux
problem (16). Expressions (15) and (16) can be rewritten in the equivalent form

θ̇ = gω −
1

2
θ × ω +

1 − g

θ
θ̇θ, (17)

θ̇ = gΩ +
1

2
θ × Ω +

1 − g

θ
θ̇θ. (18)

Here we take into account the identity

θ · ω = θ · Ω = θ · θ̇ = θθ̇

Sometimes it is more convenient to use an inverse form of equations (10) and (14)

ω(t) = Z−1 (θ) · θ̇ (t) , Ω(t) = Z−T (θ) · θ̇(t), (19)

where
Z−1 (θ) = E +

1 − cosθ

θ2
R +

θ − sin θ

θ3
R2. (20)

2.3 Potential torque

Let us introduce a concept of potential torque. This concept is necessary for a statement
and an analysis of many problems. Nevertheless a general definition of potential torque
is absent in literature.

Definition: Torque M (t) is called potential if there exists scalar function U (θ)
depending on a vector of turn such that the next equality is valid

M · ω = −U̇ (θ) = −
dU

dθ
· θ̇. (21)

Making use of equation (10) this equality can be rewritten in the form(
M +

dU

dθ
· Z
)
· ω = 0.

This equality must be satisfied for any vector ω. It is possible if and only if

M = −ZT (θ) · dU

dθ
+ f (θ, ω) × ω, (22)

where f (θ, ω) is some functional of vectors θ and ω.
Definition: a torque M is called positional if M depends on the vector of turn θ

only. For the positional torque M (θ) we have

M (θ) = −ZT (θ) · dU (θ)

dθ
. (23)

Let us show two simple examples.
If the potential function has a form of an isotropic function of a vector of turn

U (θ) = F
(
θ2
)
,
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then from expression (23) it follows

M (θ) = −2
dF
(
θ2
)

d (θ2)
θ.

Let the potential function has the simplest form

U (θ) = Ck · θ, C = const, k = const.

However, for the torque we have rather complex expression

M = −CZT · k = −C

[
k +

1

2
θ × k +

1 − g

θ2
θ × (θ × k)

]
.

Let there be given a unit vector k.

Definition: the potential U (θ) is called transversally isotropic with the axis of
symmetry k if the equality

U (θ) = U [Q (αk) · θ]

holds good for any tensor of turn Q (αk) .

It can be proved that a general form of a transversally isotropic potential can be
expressed as a function of two arguments

U (θ) = F
(
k · θ, θ2

)
. (24)

For this potential one can derive the expression

M (θ) = −2
∂F

∂ (θ2)
θ −

∂F

∂ (k · θ)
ZT · k. (25)

There exists the obvious identity

(E − Q (θ)) · θ =
(
E − QT

) · θ = 0 =⇒ (a − a′) · θ = 0,

a′ = Q · a.

Taking into account this identity and expression (25) one can get

(E − Q (θ)) · M = −
∂F

∂ (k · θ)
k × θ.

Multiplying this equality by the vector k we shall obtain

(k − k′) ·M = 0. (26)

For the isotropic potential equality (26) holds good for any vector a. Sometimes
equality (26) is very important — see, for example, section 4.
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2.4 The perturbation method on the set of properly orthogonal
tensors

Any turn-tensors must be subjected to restrictions

Q ·QT = QT ·Q = E, detQ = +1. (27)

This means that the perturbed tensor of turn Qε must be subjected to conditions
(27) as well. In contrast with this the vector of turn has no restrictions like (27). Because
of this the perturbed vector of turn can be defined in the simplest form

θε = θ + εϕ, |ε| 
 1, (28)

where the vector ϕ is called the first variation of the vector of turn. The perturbed
tensor of turn can be found by a usual way

Qε = expRε = exp (θε × E) . (29)

Equations (27) are satisfied by the tensor Qε for arbitrary vector θε. We shall consider
the parameter ε as an independent variable. In such case it is possible to introduce the
left ηε and the right ζε velocities of perturbation

∂

∂ε
Qε = ηε × Qε,

∂

∂ε
Qε = Qε × ζε, ηε = Qε · ζε. (30)

The perturbed angular velocities can be found from the Poisson equations

Q̇ε = ωε × Qε, Q̇ε = Qε × Ωε, ωε = Qε · Ωε. (31)

The conditions of integrability for system (30), (31) can be written in the form

∂

∂ε
ωε = η̇ε + ηε × ωε,

∂

∂ε
Ωε = ζ̇ε − ζε × Ωε. (32)

For the velocities of perturbation we have the expressions that are analogous to equa-
tions (19)

ηε = Z−1 (θε) · ∂

∂ε
θε = Z−1

ε · ϕ, ζε = Z−T
ε · ϕ. (33)

The perturbed angular velocities can be found by means of expressions

ωε = Z−1
ε · θ̇ε, Ωε = Z−T

ε · θ̇ε.

If an unperturbed vector θ does not depend on time (a state of equilibrium), then

ωε = εZ−1
ε · ϕ̇, Ωε = εZ−T

ε · ϕ̇. (34)

Let there be given the function f (ε, t). The quantity

f∗ (t) = [∂f (ε, t) /∂ε]ε=0 (35)
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is called the first variation of the function f (ε, t). For the first variation of the turn-tensor
and of the velocities of perturbation we have

Q∗ = η0 × Q0, η0 = Z−1
0 · ϕ, ω∗ = η̇0 + η0 × ω0, (36)

where the subscripts 0 marks the unperturbed state, η0 = ηε |ε=0.
For the right quantities the next expressions are valid

Q∗ = Q0 × ζ0, ζ0 = Z−T
0 · ϕ, Ω∗ = ζ̇0 − ζ0 × Ω0. (37)

If the perturbations are superposed on a state of equilibrium, then ω0 = Ω0 = 0.
Let us write down the formulas for the first variation of modulus of the vector of turn

θ∗ =
1

θ0

θ0 · ϕ =
1

θ0

θ0 · η0 =
1

θ0

θ0 · ζ0. (38)

3 The equations of motion of the rigid body oscillator

Let us consider a rigid body with a fixed point O. The body is supposed to be clamped
in an elastic foundation, which is resisting to any turn of the body. The position of the
body, in which the elastic foundation is undeformed, we shall choose as the reference
position. The tensor of inertia with respect to the fixed point O of the body will be
denoted as

A = A1d1 ⊗ d1 + A2d2 ⊗ d2 + A3d3 ⊗ d3, (39)

where Ai > 0 are the principal moments of inertia and the vectors di are the principal
axes of the inertia tensor. Of course the tensor A can be represented in terms of arbitrary
basis ei

di = αm
i em, A = Amnem ⊗ en, Amn =

3∑
i=1

αm
i αn

i Ai.

If the body has the axis of symmetry k, then the inertia tensor will be transversally
isotropic

A = A1 (E − k ⊗ k) + A3k ⊗ k, d3 = k, A1 = A2. (40)

The position of the body at the instant t we shall call the actual position of the body.
A turn of the body can be defined by the turn-tensor P (t) or by the vector of turn θ (t)

P (t) = Q (θ (t)) .

The tensor of inertia A(t) in the actual position is determined by the formula

A(t) = P (t) · A ·PT (t) . (41)

If the tensor A is transversally isotropic, then one can write down

A(t) = A1 (E − k′ ⊗ k′) + A3k′ ⊗ k′, k′ = P · k. (42)

A kinetic moment of the body can be expressed in two forms. In terms of the left angular
velocity

L = P ·A ·PT · ω = A1ω + (A3 − A1) (k′ · ω)k′. (43)
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Here the first sign of equality concerns to a general case, the second sign of equality is
applied to the transversally isotropic tensor of inertia only. In terms of the right angular
velocity the kinetic moment has the form

L = P · A · Ω = P · [A1Ω + (A3 − A1) (k · Ω)k] . (44)

Let us note that
k′ · ω = k ·PT · ω = k · Ω. (45)

An external torque M acting on the body can be represented in the form

M = Me + Mext,

where Me is a reaction of the elastic foundation and Mext is an additional external
torque. The elastic torque Me is supposed to be potential. Besides it is supposed to be
positional. In such case we write — see equation (23)

Me = −ZT (θ) · dU (θ)

dθ
, (46)

where the scalar function U(θ) will be called an elastic energy. In what follows the elastic
foundation is supposed to be transversally isotropic. This means that the elastic torque
can be represented in form (25)

Me (θ) = −C
(
θ2,k · θ)θ − D

(
θ2,k · θ)ZT (θ) · k, (47)

where the unit vector k is placed on the axis of isotropy of the body when the elastic
foundation is in the undeformed state.

C = 2
∂

∂ (θ2)
U
(
θ2,k · θ) , D =

∂

∂ (k · θ)
U
(
θ2,k · θ) . (48)

Let us show one of possible expressions of the elastic energy

U =
1

2

α2cθ2

α2 − θ2 + (k · θ)
2

+
1

2

β2 (d − c) (k · θ)
2

β2 − (k · θ)
2

, (49)

where α2 > 0, β2 > 0, c > 0 and d > 0 are the constant parameters and also parameters
c and d are called the bending rigidness and torsional rigidness of the elastic foundation
respectively.

If the parameters α2 and β2 tend to the infinity, then we shall get the simplest form
of the elastic potential

U =
1

2
c
(
θ2 − (k · θ)

2
)

+
1

2
d (k · θ)

2
. (50)

In this case expression (47) takes the form

Me (θ) = −cθ − (d − c)k · θZT (θ) · k. (51)
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For the external torque Mext let us accept the expression

Mext = −ZT (θ) · dV (θ)

dθ
+ Mex, (52)

where the first term describes the potential part of the external torque. The second law
of dynamics of Euler can be represented in two equivalent forms. In terms of the left
angular velocity it takes the form

[
P (θ) ·A ·PT (θ) · ω]˙+ ZT (θ) · d (U + V)

dθ
= Mex. (53)

To this equation we have to add the left Poisson equation in form (15)

θ̇ = ω −
1

2
θ × ω +

1 − g

θ2
θ × (θ × ω) . (54)

System of equations (53) and (54) gives to us a general model of the rigid body oscillator.
In terms of the right angular velocity this model can be represented in the form

A · Ω̇ + Ω × A · Ω + Z (θ) · d (U + V)

dθ
= PT (θ) · Mex, (55)

θ̇ = Ω +
1

2
θ × Ω +

1 − g

θ2
θ × (θ × Ω) . (56)

It is important that the model of rigid body oscillator is represented in terms of natural
variables: the vector of turn and the vector of angular velocity. Besides significant merit
of stated above equations is that they contain the first derivatives of the unknown vectors
only. Thus it is possible to use standard methods of the numerical analysis.

The rest of the paper deals with applications of the derived equations.

4 The stability of equilibrium state of rigid body oscil-

lator under the action of the follower torque. Para-
dox of Nikolai

Let us consider the classical problem that was investigated by E.L.Nikolai [3]. Later it
was studied by many authors — see, for example, [4], [5], where another references can
be found.

The inertia tensor of the body is supposed to be transversally isotropic and is defined
by expression (40). An external torque is defined by the next expression

Mex = LP (θ) · k, L = const, (57)

where the unit vector k is placed on the axis of symmetry of the body in the reference
position when the elastic foundation is undeformed.

Accepting the stated above assumptions we are able to write down equations (55)
and(56) in the next form.

A1Ω̇ + (A3 − A1)
(
k · Ω̇

)
k − (A3 − A1) (k · Ω)k× Ω + Cθ + DZT (θ) · k = Lk, (58)
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θ̇ = Ω +
1

2
θ × Ω +

1 − g

θ2
θ × (θ × Ω) , g =

θ sin θ

2 (1 − cosθ)
, (59)

where the functions C and D are defined by expressions (48). It is easy to find the
equilibrium solution of system of equations (58) and (59)

θ = θk, θ = const, Ω = 0. (60)

Substituting (60) into system (58)–(59) we shall get the scalar equation

C
(
θ2, θ

)
θ + D

(
θ2, θ

)
= L. (61)

If the elastic energy has form (50), then equation (61) takes the linear form

C
(
θ2, θ

)
= c, D

(
θ2, θ

)
= (d − c)k · θ =⇒ θ = Lk/d. (62)

In order to investigate a stability of the solution of equation (61) we shall use the method
of superposition of small perturbations on the state of equilibrium. To this end let us
consider the perturbed quantities

θε = θk + εϕ (t) , Ωε = εη, (63)

where θ is the solution of (61).
Now we have to write down perturbed equations (58) and (59). For this it is suffi-

ciently to provide the vectors θ and Ω in these equations by the subscripts ε. After that
it is necessary to differentiate these equations with respect to ε and to accept ε = 0. As
the result we shall get equations in variations ϕ and η.

For the sake of simplicity let us consider case (62). In such case perturbed equations
(58) and (59) take the form

A1Ω̇ε + (A3 − A1)
(
k · Ω̇ε

)
k − (A3 − A1) (k · Ωε)k× Ωε + cθε+

+ (d − c)k · θεZT (θε) · k = Lk, (64)

θ̇ε = Ωε +
1

2
θε × Ωε +

1 − gε

θ2
ε

θε × (θε × Ωε) , gε =
θε sin θε

2 (1 − cosθε)
. (65)

Expressions (63) take the form

θε =
L

d
k + εϕ, Ωε = εη, θε × k = εϕ × k. (66)

The equations in variations can be represented as

A1η̇ + (A3 − A1) (k · η̇)k + cϕ + (d − c) (k · ϕ)k+

+L
(
1 −

c

d

) [1

2
ϕ × k +

1 − g

θ
(ϕ − k · ϕk)

]
= 0,

ϕ̇ = η +
1

2

L

d
k × η − (1 − g) (η − (k × η)k) .
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These equations can be rewritten in more simple form with the help of substitution

η = ζk + y, y · k = 0; ϕ = γk + ψ, ψ · k = 0. (67)

After some transformations one can write

A3γ̈ + dγ = 0, ζ = γ̇, (68)

A1ψ̈ +

[
c

(
g2 +

L2

4d2

)
−

L2

4d
+ (1 − g) gd

]
ψ +

L

2
k × ψ = 0, (69)

where
g =

θ sin θ

2 (1 − cosθ)
, θ =

L

d
.

If the quantity |L| /d is small, i.e. |L| /d 
 1, then equation (69) can be rewritten as

A1ψ̈ +

[
c +

(c − 2d)L2

12d2

]
ψ +

L

2
k × ψ = 0. (70)

Let us look for a particular solution of these equation in the form

ψ = a exp (pt) , a = const, a · k = 0.

For the vector a we have the system[
A1

(
p2 + c +

(c − 2d) L2

12d2

)
E∗ +

L

2
k × E∗

]
· a = 0, E∗ = E − k ⊗ k.

The determinant of this system must be equal to zero[
A1

(
p2 + c +

(c − 2d)L2

12d2

)]2

+
L2

4
= 0.

It is easy to see that at least one root of this equation has a positive real part. From this
it follows that the solution of equation (70) infinitely increases. This means that the state
of equilibrium (62) or (61) is unstable for arbitrarily small quantity of external twisting
moment L. This phenomenon is well known under the name of paradox of Nikolai.

From the pure theoretical point of view it is no wonder that the state of equilibrium
is unstable. However, from the practical point of view the situation is very disagreeable.
Really, if the external torque is small, then it is supposed that the linear theory is valid.
In this case system of equations (58) and (59) can be rewritten in the form of equation

A1θ̈ + (A3 − A1) (k · θ̈)k + cθ + (d − c) (k · θ)k = Lk.

The solution of this equation has a small norm if the torque L and the norm of initial
conditions are small. Namely this way is used in the most of applied investigations.
There was no doubts that such approach is quite accurate. However, as it was shown
above, if we take into account the small quantities of the second order, then the solution
will be unstable. Is it really so? It is well-known fact [6] that the equations in variations
may give a faulty result in some cases. This means that in doubtful cases the nonlinear
analysis have to be used.
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5 Nonlinear analysis and rigorous justification of the

paradox of Nikolai

Let us consider the external torque of the kind

Mex = γL (l1k + l2P · k) , γ =
(
l21 + l22 + 2l1l2k · P · k)− 1

2 . (71)

If l1 = 1, l2 = 0, then Mex is a dead torque; if l1 = 0, l2 = 1, then Mex is a
followed (tangential) torque; if l1 = l2 = 1, then Mex is a semitangential torque. For
the elastic torque let us accept expression (47) , where C

(
θ2,k · θ) and D

(
θ2,k · θ) are

the functions of a general kind. The tensor of inertia is supposed to be transversally
isotropic with the axis of symmetry k.

For the vector of kinetic moment we have formulas (43) and (44). Let us write down
the equation of the energy balance when the external torque is defined by expression (71)

ε̇ = γL (l1k · ω + l2k · Ω) , ε =
1

2
A1ω2 +

1

2
(A3 − A1) (k · Ω)

2
+ U (θ) . (72)

From (72) it follows

ε − ε0 = L

t∫
0

γ (τ)k · (l1ω (τ) + l2Ω (τ))dτ. (73)

If the integral in the right side of equation (73) is bounded for all t, then for small |L|

the energy ε is close to the value of the initial energy ε0. In such a case the stability is
possible. If integral (73) is infinitely increasing, then we have the accumulation of energy
in the system and the stability is impossible for arbitrarily small |L| .

Let us write the equation of motion in two forms

[A1ω + (A3 − A1) (ω · k′)k′]˙+ Cθ + DZT · k = γL (l1k + l2k′) , (74)

[A1Ω + (A3 − A1) (Ω · k)k]˙+ (A3 − A1) (k · Ω) Ω × k+

+Cθ + DZ · k = γL
(
l1PT · k + l2k

)
, (75)

where ω · k′ = Ω · k, k′ = P · k.
Equations (74) and (75) are equivalent. Nevertheless from them the nontrivial result

can be found. Subtracting equation (75) from equation (74) one can get

[A1 (ω − Ω) + (A3 − A1) (Ω · k) (k′ − k)] +̇

+ (A3 − A1) (k · Ω)k× Ω + Dθ × k = γL
[
(l1 − l2)k + l2k′ − l1PT · k] .

Multiplying this equation by the vector k we shall obtain the next equation

[A1 (ω − Ω) · k + (A1 − A3)k · Ω (1 − cosϑ)]˙=

= γL (l1 − l2) (1 − cosϑ) , (76)
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where cosϑ = k · k′ = k · P · k.

Let us note that equation (76) does not contain the characteristics of the elastic
foundation. Equation (76) can be rewritten in another form. From equations (19) and
(20) it follows

ω − Ω =
(
Z−1 − Z−T

) · θ̇ = 2
1 − cosθ

θ2
θ × θ̇. (77)

The vector of turn θ can be represented in the form of the composition

θ = xk + y,y · k = 0,y = y (t)Q (ψ (t)k) · m, (78)
m · k = 0, |m| = 1, θ2 = x2 + y2.

One can prove the formulas

k ·
(
θ × θ̇

)
= k · (y × ẏ) = ψ̇y2, 1 − cosϑ =

y2 (1 − cosθ)

θ2
. (79)

Taking into account relations (77), (78) and (79) equation (76) can be rewritten in
the form

[(1 − cosϑ) F]˙= γL (l1 − l2) (1 − cosϑ) , (80)

where
F = 2A1ψ̇ + (A1 − A3)k · Ω.

Equality (80) was derived by another way and was shown to the author in the private
talk by Dr. A. Krivtsov. In fact equality (80) is due to the existence of property (26) for
the elastic torque. Let us note that the right side of equation (80) has the constant sign,
which is defined by the sign of the number L (l1 − l2). Let us suppose that L (l1 − l2) > 0.
In such a case let us choose the initial conditions such that F |t=0> 0. Equality (80) shows
to us that the function F (t) tends to infinity as t → ∞. This means that the body will
have an infinitely big velocity of precession ψ̇, i.e. state of equilibrium (61) or (62) is
unstable for arbitrarily small value of twisting torque and for any transversally isotropic
elastic foundation. Therefore the analysis on the base of the equations in variations gives
the right result. The paradox of Nikolai is due to an accumulation of energy in the
system.

6 The simplest rigid body oscillator. The total inte-

grability of the basic equations

Let us consider the simplest case of the rigid body oscillator. For this end let us accept
the next restrictions

A = AE, U = u
(
θ2
)
,

d

dθ
U = 2u′ (θ2

)
θ = c

(
θ2
)
θ. (81)

In addition let us introduce the torque of friction in the form

Mex = −bω, b = const � 0. (82)
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In such a case basic equations (55) and (56) can be written down in the form

AΩ̇ + bΩ + c
(
θ2
)
θ = 0, (83)

θ̇ = Ω +
1

2
θ × Ω +

1 − g

θ2
θ × (θ × Ω) , g =

θ sin θ

2 (1 − cosθ)
. (84)

It is seen that even in this simplest case the basic system is rather complicated. The
system can be simplified only in the case of the plane oscillations when

ω = Ω = θ̇, θ × Ω = 0.

If it is so, then system (83) and (84) takes the form

Aθ̈ + bθ̇ + c
(
θ2
)
θ = 0; t = 0 : θ = θ0, Ω = Ω0, θ0 × Ω0 = 0. (85)

This system can be investigated without any problems.
Let us discuss system of equations (83) and (84) in a general case. In order to

underline the difference between conventional approach and our method let us consider
both of them.

6.1 Conventional approach

Let us try to investigate system (83), (84) on the base of application of the Euler angles.
The tensor of turn can be represented [1] in the form

P (θ) = Q (ψk) · Q (ϑp) · Q (ϕk) = Q (ϑp′) · Q (βk) , (86)

where
β = ϕ + ψ, p′ = Q (ψk) · p, k · p = k · p′ = 0. (87)

The left angular velocity is determined by the formula

ω =
(
ψ̇ + ϕ̇ cosϑ

)
k + ϑ̇p′ + ϕ̇ sin ϑp′ × k. (88)

Making use expressions (7), (86), (88) and substituting them into equation (90) one
can derive the system

A
(
ψ̇ + ϕ̇ cosϑ

)
˙+ b

(
ψ̇ + ϕ̇ cosϑ

)
+

c
(
θ2
)
θ

2 sin θ
sinβ (1 + cosϑ) = 0,

A
(
ϑ̈ + ψ̇ϕ̇ sin ϑ

)
+ bϑ̇ +

c
(
θ2
)
θ

2 sin θ
sin ϑ (1 + cosβ) = 0,

A

[
(ϕ̇ sin ϑ)˙− ϕ̇ϑ̇

]
+ bϕ̇ sinϑ +

c
(
θ2
)
θ

2 sin θ
sin β sin ϑ = 0. (89)

In addition to this system we have the relations

1 + 2 cosθ = cosϑ + cosβ + cosϑ cosβ, β = ϕ + ψ.

It is not so easy to find the total solution of system (89). Let us note that represen-
tation (86) is completely admissible. However, there are many another possibilities and
the most of them will lead to the complicated equations. If we want to find the best
representation, then we have to look for this representation in the process of a solution
rather then to guess it a priori. The latter circumstances was underlined in the paper [1].
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6.2 The total integrability of the equations of the simplest rigid
body oscillator

Multiplying equation (83) by the tensor P (θ) from the left one can obtain

Aω̇ + bω + c
(
θ2
)
θ = 0. (90)

Here the identity

P · Ω̇ = (P · Ω)˙− Ṗ · Ω = ω̇ − (P × Ω) · Ω = ω̇

was taken into account.
Equation (90) is equivalent to equation (83). However from (83) and (90) the non-

trivial result follows

A (ω − Ω)˙+ b (ω − Ω) = 0 =⇒ω − Ω = (ω0 − Ω0) exp
(

−
bt

A

)
, (91)

where ω0 and Ω0 are the initial angular velocities. Expression (91) gives to us three
integrals. Now it is necessary to consider two cases

a)ω0 − Ω0 = 0, b)ω0 − Ω0 = |ω0 − Ω0| e �= 0.

In the first case we deal with the plane vibrations of the oscillator. Really, in the first
case from (91) it follows that

ω = Ω =⇒Ω × θ = 0.

The latter fact follows from (15) and (16). Thus we have equation (85). It is more
interesting to investigate the case b). From equations (15) and (16) the next relation can
be derived.

g (θ) (ω − Ω) =
1

2
θ × (ω + Ω) .

Taking into account integral (91) one can get

g (θ) exp
(

−
bt

A

)
(ω0 − Ω0) =

1

2
θ × (ω + Ω) .

Besides let us take into account the identity

1

2
θ × (ω + Ω) =

sin θ

θ
θ × θ̇.

The previous expression can be rewritten in the form

2 (1 − cosθ)

θ2
θ × θ̇ = (ω0 − Ω0) exp

(
−

bt

A

)
. (92)

From this equation one more integral follows

θ (t) · (ω0 − Ω0) = 0 =⇒ θ (t) · e = 0, (93)
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where the vector e is the vector (ω0 − Ω0) / |ω0 − Ω0|. Equation (93) shows that the
vector θ (t) can be represented in the form

θ (t) = θ (t)Q (ψe) ·m, m = θ0/θ0, m · e = 0, ψ (0) = 0. (94)

From this representation it follows

θ × θ̇ = ψ̇θ2e. (95)

Substituting (95) into (92) one can get

ψ̇ =
1 − cosθ0

1 − cosθ (t)
ψ̇0 exp

(
−

bt

A

)
, ψ̇0 > 0. (96)

Thus if we know the angle of nutation θ (t) then the angle of precession can be found
from (96). Let us derive the equation for the angle θ. For this end let us calculate the
right angular velocity

Ω =
θ̇

θ
θ +

sinθ

θ
ψ̇e× θ − (1 − cosθ) ψ̇e. (97)

Substituting expression (97) into equation (83) and projecting the obtained equation
on the vectors θ, e and e × θ one can get three scalar equations, where two of them
(projections on e and e × θ) will be identities because of equality (96). Projection on
the vector θ gives

A

[
θ̈ − sin θ

(
1 − cosθ0

1 − cosθ

)2 (
ψ̇0

)2

exp
(

−
2bt

A

)]
+ bθ̇ + c

(
θ2
)
θ = 0. (98)

If the friction is absent (b = 0) , then this equation can be solved in terms of quadratures.
The plane motions of the oscillator can be found from equation (98) when ψ̇0 = 0.
In a general case equation (98) can be studied by conventional methods of nonlinear
mechanics. Let us note that even for small θ equation (98) is nonlinear one.

Aθ̈ + bθ̇ +

[
c (0) − A

(
θ0

θ

)4

ψ̇2
0 exp

(
−

2bt

A

)]
θ = 0. (99)

In contrast with it for small turns system of equations (83) and (84) can be linearized
and we shall get the linear equation

Aθ̈ + bθ̇ + c (0) θ = 0. (100)

Nonlinear equation (99) can be derived from equation (100) if one take into account
that θ = |θ| . If the friction is absent (b = 0) then equation (98) has an exact solution

θ = θ0 = const, ψ̇ = ψ̇0 = const,
(
ψ̇
)2

=
c
(
θ2

0

)
θ0

A sin θ0

. (101)

This solution is called a regular precession, which will be considered in the next
section. If the friction is present, then for the big times equation (98) transforms to
equation (85).



60 P. A. Zhilin. Advanced Problems in Mechanics

Let us compare two described approaches. The first approach is defined by represen-
tation (86) of the turn-tensor, where the unit vectors k and p (k · p = 0) were chosen a
priori. This means that for angles ψ, ϑ, ϕ and the velocities ψ̇, ϑ̇, ϕ̇ we have to provide
the arbitrary initial conditions. In other words we have to look for a general solution of
the system (89). It is not known if it is possible.

In the second approach the representation of the turn-tensor has a special form

P = Q (θ) = Q [θQ (ψe) ·m] = Q (ψe) ·Q (θm) · QT (ψe) . (102)

Here we used representation (94) for the vector of turn and the unit vectors e and
m, which were found in the process of solution. Representation (102) contains only two
angles θ and ψ, but the unit vectors e, m are chosen by a special manner. Representation
(86) contains three angles ψ, ϑ and ϕ but the unit vectors k and p can be any orthogonal
vectors. Let us accept the relation ϕ = −ψ, i.e. β = 0, in representation (86). In such
case system (89) takes the form (β = 0)

A
[
ψ̇ (1 − cosθ)

]
˙+ bψ̇ (1 − cosθ) = 0,

A
(
θ̈ − ψ̇2 sinθ

)
+ bϑ̇ + c

(
θ2
)
θ = 0,

A

[(
ψ̇ sin θ

)
− θ̇ψ̇

]
+ bψ̇ sin θ = 0.

The first equation of this system gives to us integral (96). The third equation is an
identity if we take into account the first equation. At last, the second equation coincides
with equation (98). Thus system (89) has a particular solution coinciding with the found
above solution. However when using representation (86) this solution does not allow to
satisfy all initial conditions since the vectors k and p have the preassigned directions.

Let us turn back to equation (98). A general analysis of this equation can be made by
means of conventional methods. Because of this there is no need to do it in this paper.

7 The regular precession and the equations in varia-
tions

Let us consider the body with the transversally isotropic tensor of inertia. The elastic
foundation is supposed to be transversally isotropic as well. The equations of motion are
given by expressions (53), (54) and expression (47) for the elastic torque.

One can write down

[A1ω + (A3 − A1) (k′ · ω)k′]˙+ Cθ + DZT · k = 0, k′ = P · k, (103)

θ̇ = ω −
1

2
θ × ω +

1 − g

θ2
θ × (θ × ω) , (104)

where the function C and D are defined by expressions (48).
A particular solution of system (103), (104) can be represented in the form

θ = ϑp′, p′ = Q (ψk) · p, P = Q (ϑp′) , p · k = 0. (105)
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Motion (105) is called a regular precession if the restrictions

ϑ = const, ψ̇ = const (106)

hold good. The left angular velocity is defined in such case by the formula

ω = Q (ψk) · ω0, ω0 = ψ̇ [(1 − cosϑ)k + sin ϑk × p] = const. (107)

We see that the vector ω is a precession of the vector ω0 around the axis k. Also
there are properties

θ · ω = θ · Ω = 0, k · θ = 0.

This means that the vector of turn is orthogonal to the vector of angular velocity. In
addition let us accept the restriction

D
(
θ2,k · θ) |k·θ=0=

∂

∂ (k · θ)
U
(
θ2,k · θ) |k·θ=0= 0,

which is satisfied for the most kinds of elastic energy. After substitution (105)–(107) into
equations (103), (104) we shall get the identities if the equality

ψ̇2 =
C
(
ϑ2, 0

)
ϑ

sinϑ [A3 (1 − cosϑ) + A1 cosϑ]
(108)

is valid. If A1 = A3 = A, then we have expression (101). Thus expressions (105)–(108)
give to us the exact solution of system (103)–(104).

Now we must investigate a stability of solution (105)–(108). Generally it is rather
cumbersome process. In order to simplify it let us accept

A = A1 = A3, D
(
θ2,k · θ) = 0, C

(
θ2,k · θ) = c = const. (109)

This means that the tensor of inertia and the elastic foundation are supposed to be
isotropic. Under these assumptions perturbed equations of motion (103)–(104) take the
form

Aω̇ε + cθε = 0,

θ̇ε = ωε −
1

2
θε × ωε +

1 − gε

θ2
ε

θε × (θε × ωε) . (110)

The perturbed quantities ωε and θε can be represented in the form

ωε = ω + εη, θε = θ + εϕ, |ε| 
 1, (111)

where ω and θ are defined by expressions (105)–(108). The quantities η and ϕ are
called the first variations of ω and θ respectively. If we shall use representation (111),
then we get the equations for η and ϕ with the varying coefficients. Because of this it
will be better to represent the functions ωε and θε in the next form

ωε = Q (ψk) · (ω0 + εη) , θε = Q (ψk) · (ϑp + εϕ) , (112)

where the function ψ is defined by (108).
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It is easy to calculate

ω̇ε = Q (ψk) ·
[
ψ̇k × ω0 + ε

(
η̇ + ψ̇k × η

)]
,

θ̇ε = Q (ψk) ·
[
ψ̇ϑk × p + ε

(
ϕ̇ + ψ̇k × ϕ

)]
.

From equations (110) the next equations for variations η and ϕ can be derived

A
(
η̇ + ψ̇k × η

)
+ cϕ = 0,

ϕ̇ + ψ̇k × ϕ =
ϑ sin ϑ

2 (1 − cosϑ)
η −

ϑ − sin ϑ

2 (1 − cosϑ)
(p · ϕ)ω0 −

1

2
ϕ × ω0 −

−
1

2
ϑp× η +

2 (1 − cosϑ) − ϑ sin ϑ

2ϑ (1 − cosϑ)
(ϕ · ω0 + ϑp× η)p,

where ψ̇ is determined by (108) and ϑ = const. This system of linear differential
equations with constant coefficients can be investigated by conventional methods. Our
aim was only to show the derivation of the equations in variations.

Appendix 1. Elastic energy of foundation

In the section 3 there was given the definition of an elastic energy in terms of poten-
tial function U (θ). This function was interpreted as the elastic energy of foundation.
However in the nonlinear theory of elasticity the concept of elastic energy has a uniquely
determined meaning. Thus it is necessary to show that there is no contradiction between
these two concepts.

The foundation is supposed to be an elastic body. The boundary of the foundation
is the surface S = S1

⋃
S2

⋃
S3. The part S1 of the surface S is fixed. The part S2 is a

free surface. The part S3 is the interface between the foundation and the rigid body.
Let us write the equation of the energy balance for the system “foundation plus rigid

body”
K̇ + U̇ = 0, (113)

where K is the kinetic energy of rigid body, since the foundation is supposed to be
inertialess; U is the total intrinsic energy, i.e. elastic energy or energy of deformation,
of the elastic foundation, since the intrinsic energy of rigid body has a constant value.
The right side of (113) is equal to zero because the power of external forces is absent.

Now let us write the equation of the energy balance for rigid body only. The external
forces, acting on the body, are generating by the vector of stress acting on the part S3

of the boundary. Thus one can write

K̇ = −

∫
N (P) · τ (P) · Ṙ (P)dS (P) , P ∈ S3, (114)

where R (P) is the vector of position of the point P of the surface S3; the integration is
going over the surface S3; the vector N is the external unit normal to the surface S3; the
tensor τ is the Cauchy stress tensor.
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In according with the basic theorem of kinematics of rigid body we have

R (P) = R (Q) + P (t) · (r (P) − r (Q)) , (115)

where Q is the pole, r (P) and r (Q) are the vectors of position of points P and Q in the
reference position. From equation (115) it follows

v (P) = v (Q) + ω (t) × [R (P) − R (Q)] . (116)

Substituting expression (116) into equation (114) one can get

K̇ = F · v (Q) + Me · ω, (117)

where
F = −

∫
N (P) · τ (P)dS (P) ,

Me = −

∫
[R (P) − R (Q)] × τ (P) · N (P) dS (P) .

Making use of (113) equation (117) can be rewritten in the form

F · v (Q) + Me · ω = −U̇ (R (Q) , θ) , (118)

where the vector θ is the vector of turn of the rigid body and henceforth of the surface
S3. If the point Q is fixed, then we have definition (21) or (46). Thus the potential U in
expression (46) is the elastic energy of foundation.

Appendix 2. A derivation of the representation for the

integrating tensor

Calculating the trace from the both sides of the Poisson equation (9) one can obtain

(trQ)˙= tr (ω × Q) = −2
sin θ

θ
θ · ω, tr (a ⊗ b) = a · b.

Taking into account the equality

trQ = 1 + 2 cos θ

from the previous equation it is easy to derive

θθ̇ = θ · θ̇ = θ · ω. (119)

Multiplying equation (9) by the vector θ one can get

Q̇ · θ = ω × θ = −R · ω
Making use the identity

Q̇ · θ = (Q · θ)˙− Q · θ̇ = − (Q − E) · θ̇
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and equation (3) the previous equation can be rewritten in the form(
sinθ

θ
R +

1 − cosθ

θ2
R2

)
· θ̇ = R · ω.

A general solution of this equation has the form

ω = λθ +

(
sin θ

θ
E +

1 − cosθ

θ2
R
)
· θ̇, (120)

where the scalar function λ must be found.
Multiplying equation (120) by the vector θ and taking into account equality (119)

we have
λ =

θ − sin θ

θ3
θ · θ̇.

Equation (120) takes the form

ω =

[
E +

1 − cosθ

θ2
R +

θ − sin θ

θ3
R2

]
· θ̇ = Z−1 · θ̇. (121)

Here we use the identity
R2 = θ ⊗ θ − θ2E.

Expression (121) gives to us representation (20). Thus we had found the tensor Z−1.
In order to calculate the tensor Z we must take into account that the tensor Z is the
isotropic tensor function of the tensor R. This means that the next representation is
valid

Z = αE + βR + γR2, Z · Z−1 = E.

From this it follows

α = 1, β = −
1

2
, γ =

1 − g

θ2
, g =

θ sinθ

2 (1 − cosθ)
.

That is expression (11).
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