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Phase Transitions and General Theory
of Elasto-Plastic Bodies∗

Abstract

The paper deals with a new theory of elastoplastic bodies based on a description of inelas-
tic properties by means of the phase transitions in the material. The medium is assumed to be
micropolar. The theory is applicable to the materials in any phase states. Besides, the theory
takes into account the dry friction between the particles of the medium.

1 Introduction

A behavior of solid structures under an external loading has been studied during several centuries.
However intensive and task-oriented investigations had begun in XIX century and are carried out
till the present time. All known materials can be separated on two different classes: elastic
materials and all others. In general, the fundamentals of the nonlinear theory of elasticity may
be considered as completely developed [1]. For inelastic materials the situation is quite different.
There exists a huge massive of experimental data. This data is widely used for practical purposes
and normative documents for the engineering projects, but as a rule this data is not used in
theoretical investigations. A lot of established experimental facts cannot be described by the
existing theories of the elastoplastic bodies till now. Let us point out some of them [2]: 1. Under
sufficiently high pressure all materials experience irreversible strains (Bridgman), which can be
considered as phase transitions. The rate of these transitions is determined by the properties of
the material and do not depend on the rate of change of the external loads. 2. At sufficiently high
pressure all rigid bodies flow similarly to a fluid (Tresca, Bridgman). For example, the classical
experiment by H. Tresca on extrude of lead shows absence of the stagnant zones in the material.
On contrary, from any existing theory of plasticity it follows that the bands of the “dead” material
should be present [3]. Thus we see a serious qualitative discrepancy between the theory and
experiment. 3. The experiments on large inelastic deformation show essential influence of the
size effect [4]. 4. In all experiments with a smooth loading the Savart – Masson effect is exhibited
clearly. 5. Experiments with bulk materials show the necessity of taking into account the dry
friction between particles of the medium. All these facts are of great importance because they
are observed practically in all experiments. Nevertheless, the existing theories of plasticity are
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not able to explain these facts. Moreover, the most of the known theories of plasticity are based
on the yield criterions either by Saint-Venant – Tresca or by Mises. Both criterions were never
strictly confirmed by experiments. While the existing theories cover almost all practical needs
and extremely useful, nevertheless they are not able to explain some features of the material
behavior.

The aim of the presentation is the attempt of build-up of such theory of inelastic materials,
which would qualitatively feature the basic experimental facts. Besides, the theory should be
sufficiently strict from the mathematical point of view. A novelty of the offered theory consists
in the following. The experiments show that the inelastic materials cannot be modelled within
framework of the material (Lagrangian) description. However the most of the known theories of
the elastoplastic bodies are based on the material description. In what follows the spatial (Eule-
rian) description is used. The medium is assumed to be micropolar. Kinematics of the medium
with rotational degrees of freedom is described. The fundamental laws are stated for open sys-
tems in a general form. The equation of the energy balance contains the term, which describes
the formation of new particles or fragmentation of the initial particles. The concepts of internal
energy, temperature and entropy are introduced by means of the pure mechanical arguments. The
dry friction between the particles of the medium is introduced through the antisymmetric part of
the stress tensor. The free energy is set in the form, which is suitable simultaneously for gases,
fluids and solids. It is important to note that the material under the consideration has a finite
tensile strength. That means that the constitutive equations can violate to the conditions of the
strong ellipticity.

2 Fundamental Laws

2.1 Kinematic relations.

Let us consider a set of particles which are moving with respect to an inertial system. The set is
not assumed to be a continuum. That means that the concept of a smooth differentiable manyfold
cannot be used. Because of this a pure spatial (Eulerian) description will be used. Let a vector
V(x, t) be the velocity of a particle which at the actual instant of time t occupies the point x of
a reference system. Let a quantity K(x, t) be some property of the particle. In order to find the
change of K(x, t) during a motion of a particle we have to apply the material derivative [5]

δK(x, t)

δt
≡ dK(x, t)

dt
+

(
V(x, t) −

dx
dt

)
· ∇K(x, t).

If the point x is moving with respect to the inertial reference system, then this definition does not
coincide with conventional one and does not contradict with the Galilei principle of relativity. It
is important to note that all used operators must be defined in the reference system rather than
on smooth manyfold as at the material description. Besides let us point out that in the definition
of a material derivative only the derivative V · ∇ along the trajectory of a particle is used. Thus
the continuity of K(x, t) with respect to the space variable x is not assumed. For a vector of the
particle acceleration we have

W(x, t) =
d

dt
V(x, t) +

(
V(x, t) −

dx
dt

)
· ∇V(x, t).
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Let us introduce the displacement vector

δu(x, t)

δt
= V(x, t) ⇒ du

dt
= V · g, (1)

where
g(x, t) ≡ (E − ∇u(x, t)) , det g(x, t) > 0. (2)

The tensor g(x, t) will be termed the first measure of deformation. The Eq.(1) is a definition of
the displacement vector. From (1) it follows

∇V(x, t) = −
δg(x, t)

δt
· g−1(x, t). (3)

Eqs.(1)–(3) may be found in [6] and will be used in the reduced equation of the energy balance.
If a tensor P(x, t) determines the rotation of a particle, then the angular velocity of the particle is
defined by the modified Poisson equation [5]

δP(x, t)

δt
= ω(x, t) × P(x, t). (4)

Let us introduce the second measure of deformation F by means of equalities

∂

∂xs
P = Fs × P, F = gs ⊗ Fs, (5)

where the vectors gs are the basis vectors and the following conditions of integrability hold [5]

∂Fs

∂xm
−

∂Fm

∂xs
= Fm × Fs. (6)

From Eq.(6) it follows

∇ ⊗ ω =
δF
δt

+ F × ω + ∇V · F.

2.2 Particles and mass balance.

Let us introduce two nonnegative functions: η(x, t) is the particle density and ρ(x, t) is the mass
density. If the material has a tendency to a fragmentation, then the total mass is conserved, but
the number of particles does not conserved. In such a case the following equations are valid

δη

δt
+ η∇ · V = χ,

δρ

δt
+ ρ∇ · V = 0, (7)

where χ(x, t) determines the production of new particles for the unit of time. From practical
point of view the importance of η(x, t) is determined by the necessity to take into account the
porosity of material. In such a case the function χ(x, t) in Eqs.(7) depends on pressure. Using
the identity [5]

∇ · V(x,t) = −
1

I3(g)

δI3(g)

δt
, I3(g) ≡ det g
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the above equations can be written in the form

δ

δt

[
η

I3(g)

]
=

χ

I3
,

δ

δt

[
ρ

I3(g)

]
= 0. (8)

Let us introduce a some characteristic of a particle called the particle volume vp. The quantity
c = vpη, known as the compactness, determines the material volume vpηdV occupied by the
material in the control volume dV . The quantity cp = 1 − vpη is termed a porosity. Note that
we apply the term “porosity” in unconventional sense because we do not consider the porous
medium. We mean that any solid material has a several stable states corresponding to different
magnitudes of the compactness. The transition of the material from one stable state to another
stable state is a typical phase transition which we would like to take into account. For all known
materials compactness satisfies an inequality 0 ≤ vpη ≤ 0.74. Thus for porosity we have
0.26 ≤ cp ≤ 1. The first equation from Eqs.(7) may be rewritten in terms of porosity

δcp

δt
+ vpχ(cp, p) = ∇ · V, (9)

where p is a pressure and the function vpχ(cp, p) must be defined by the constitutive equation,
for which there exist a many different possibilities, but the final results are not known. Because
of this we are not able to give a short resume of these possibilities. As an example the following
equation may be considered

dcp

dt
+ V · ∇cp = ∇ · V −

ε2p

ε2 + (pc − p)2
,

where ε2 
 1 is a small parameter and pc is some critical pressure. This equation shows the
behavior of the porosity near one point of the phase transitions. The realistic equations should
have a more complicated form.

2.3 Dynamics Laws.

Let us introduce the stress tensor T(x, t) and the moment stress tensor M(x, t). These tensors
are defined in the space, but not in the material. For them the Cauchy formulae are valid

T(n) = n · T, M(n) = n · M.

The first and the second laws by Euler have the well known form

∇ · T + ρF = ρ
δV(x, t)

δt
, (10)

∇·M + T× + ρL = ρ
δ(J · ω)

δt
, (11)

where the mass density of the inertia tensor J of a particle in the actual position is connected with
the constant tensor J0 in the reference position by

J(x, t) = P(x, t) · J0 · PT (x, t). (12)
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2.4 Equation of the energy balance.

The equation of the energy balance in the local form can be written down as

ρ
δU

δt
= TT · · (∇V + E × ω) + MT · ·∇ ω + ∇· h + ρq. (13)

where U is the mass density of internal energy and the vector h is the vector of the heat flux. The
right hand side of Eq.(13) contain the power of the stress tensor and of the moment stress tensor.
One part of the power changes the specific internal energy. Another part partly remains in the
body as a heat and partly radiates into the external medium. In order to separate these parts the
stress tensor and the moment stress tensor must be represented as

T = Te + Ti, M = Me + Mi, (14)

where the quantities with the subscript “e” are independent of velocities and the quantities with
the subscript “i” are the rest part of stresses. One may substitute Eq.(14) into Eq.(13) in order
to get the final form of the energy balance equation. However in such a form the energy balance
equation is almost useless. We have to transform this equation in order to obtain the reduced
equation of the energy balance.

The forth fundamental law of mechanics is the second law of thermodynamics. The statement
of this law will be given in the following section.

3 The heat conductivity equation

Let us introduce the concepts of the temperature, entropy and chemical potential by means of the
following equation

ρϑ
δH

δt
+ ρη

δC

δt
= ∇ · h + ρq + TT

i · · (∇V + E × ω) + MT
i · ·∇ω, (15)

where the functions ϑ(x, t), H(x, t) and C(x, t) are respectively termed the temperature, the
specific entropy and the specific chemical potential. Let us underline that Eq.(15) is the definition
for these functions. The only purpose of introduction of the specific entropy and the specific
chemical potential (these functions by itself have no physical sense) is to define by an appropriate
way the temperature ϑ and the particle density η or, what is the same, porosity of the material.
Of course, we need some additional assumptions for a complete definition of those quantities.
Now let us accept the second law of thermodynamics in the form of the following inequalities

TT
i · · (∇V + E × ω) + MT

i · ·∇ω ≥ 0, h · ∇ϑ ≥ 0. (16)

Inequalities (16) are more strong than the consequences of the known inequality by Clausius –
Duhem [7]. However from our point of view Eq.(16) are quite good for practical aims. The
constitutive equation for the vector of the heat flux may be taken in the simplest form

h = − κ ∇ϑ, κ ≥ 0. (17)

The substituting of Eq.(17) into Eq.(15) leads to the heat conduction equation.
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4 Reduced equation of the energy balance, the Cauchy –
Green relations

Let us introduce the specific free energy

F = U − ϑH − ηC. (18)

Making use Eqs.(14), (15) and (18) the equation (13) can be rewritten in the following form

ρ
δF

δt
+ ρH

δϑ

δt
+ ρC

δη

δt
= MT

e · · δF
δt

−
(
g−1 · TT

e + g−1 · F · MT
e

) · ·δg
δt

+

+
1

2

[(
MT

e · F − Te

)
× × P

]T
· ·δP

δt
. (19)

The equation of the energy balance written in the form like Eq.(19) is termed the reduced equa-
tion of the energy balance. This equation involves only the intrinsic variables. From Eq.(19) we
see that the free energy is a function of the following arguments

F = F (ϑ, η, g, F, P) . (20)

Taking into account this statement it is readily to derive the Cauchy–Green relations

H = −
∂F

∂ϑ
, C = −

∂F

∂η
, Me = ρ

∂F

∂F
, Te = −ρ

∂F

∂F
· FT − ρ

∂F

∂g
· gT . (21)

Now Eq.(20) takes the form

ρ

(
∂F

∂P

)T

· ·δP
δt

=
1

2

((
MT · F − T

)
× × P

)T

· ·δP
δt

. (22)

Here we have to take into account that the material derivative of the tensor P cannot be changed
by an arbitrarily manner. Indeed, from the Poisson equation Eq.(4) it follows

δP(x, t)

δt
· PT (x, t) = ω(x, t) × E ⇒ (A · P)

T · ·δP(x, t)

δt
= 0, ∀A : A = AT

.

Hence we get the relation

ρ
∂F

∂P
−

1

2

(
MT

e · F − Te

)
× × P = A · P.

In order to exclude the arbitrary symmetric tensor A, we have to multiply both sides of this
equation by the tensor PT and to calculate the vector invariants of both sides. As a result we have[

ρ
∂F

∂P
· PT + MT

e · F − Te

]
· ·C = 0, ∀C : C = −CT . (23)

The stress tensor Te and the moment stress tensor Me are defined by the Cauchy–Green relations
Eqs.(21). That means that the condition Eq.(23) is the restriction superposed on the free energy.
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Below we use the technics given in [8]. From Eq.(23) we see that the free energy must satisfy
the following equation of first order partial differential equation

(
∂F

∂g

)T

· · (C · g) +

(
∂F

∂P

)T

· · (C · P) +

(
∂F

∂F

)T

· · (C · F − F · C) = 0. (24)

The characteristic system for Eq.(24) has a form

dg
ds

= C · g,
dP
ds

= C · P,
dF
ds

= C · F − F · C. (25)

The free energy to satisfy Eq.(24) must be a function of the integrals of Eq.(25). The latter
consists the system of the order 21 and has not more than 18 functionally independent integrals
of Eq.(25).

5 Nonpolar medium with the Coulomb friction

Let us assume that the free energy is independent of the second deformation measure F

F = F (ϑ, η, g) , Me = 0. (26)

We may rewrite Eq.(19) as

ρ
δF

δt
+ ρH

δϑ

δt
+ ρC

δη

δt
= −

(
g−1 · TT

e

) · ·δg
δt

.

The stress tensor can be decomposed as

Te = −p E + τ, τ = τT , tr τ = 0.

The representations for Ti and Mi will be given below. Making use the technics given in the
previous section one can prove that in case under consideration the free energy has a form

F = F (ϑ, η, ρ, γ, G) ,

where
γ ≡ I23(g), G ≡ I−2/3

3 gT · g, detG = 1.

Following [6] the unimodular tensor G will be termed the strain of shape change. The constitutive
equations for the pressure p and for the deviator τ take a form

p = ρ2 ∂F

∂ρ
+ ρI3(g)

∂F

∂I3(g)
, τ = −2ρ

[
γ−1/3g · ∂F

∂G
· gT −

1

3
G · · ∂F

∂G
E
]

.

Let us introduce the new parameters

ζ =
1√

ρI3(g)
, z =

√
ρ

I3(g)
,

δz

δt
= 0.
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In such a case we have the final form of constitutive equations

H = −
∂F

∂ϑ
, C = −

∂F

∂η
, p = −

∂zF

∂ζ
, −

ζτ

2
= γ−1/3g · ∂zF

∂G
· gT −

1

3
G · ·∂zF

∂G
E, (27)

where the free energy is a function of five arguments

F = F(ϑ, η, ζ, z, G). (28)

Now let us assume the following representations for the viscous stresses

Ti = t × E, Mi = m × E. (29)

With these assumptions the first inequality from Eq.(16) takes the form

−t · (2ω − ∇ × V) − m · (∇ × ω) > 0.

For the moment vector m we take the viscous friction law and for the stress vector t we assume
that the Coulomb dry friction law is valid

t = −k h(n · Te · n) |n · Te · n|
(2ω − ∇ × V)

|2ω − ∇ × V|
, m = −µm (∇ × ω) , µm ≥ 0, (30)

where the function h(n · Te · n) is determined by

h(n · Te · n) =

{
1, n · Te · n < 0,

0, n · Te · n ≥ 0,

k ≥ 0 is the coefficient of the dry friction. The unit vector n in Eq.(30) must be found as a
solution of the problem

n · Te · m = max, ∀n, m : |n| = |m| = 1, n · m = 0.

It is easy to prove that the solution of this problem is unique. The Coulomb law in Eq.(30) is
applicable if a sliding is present. Otherwise we have a condition

2ω = ∇ × V, (31)

and the vector t has to be found from Eq.(11)

−µm∇ × [∇ × (∇ × V)] − 4t = ρ
δ

δt
[J · (∇ × V)] . (32)

Using Eq.(32) the vector t can be eliminated from the first law of dynamics.

6 Isotropic materials

Let us suppose that we deal with isotropic materials. In such a case the free energy depends on
the invariants of the tensor G

F = F(ϑ, η, ζ, z, I1, I2), I1(G) ≡ E · ·G, I2(G) ≡ G · ·G. (33)
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Making use of Eq.(33) we can rewrite Eqs.(20) as

H = −
∂F

∂ϑ
, C = −

∂F

∂η
, p = −

∂zF

∂ζ
,

ζ τ =
2

3

(
I1

∂zF

∂I1
+ I2

∂zF

∂I2

)
E − 2

(
∂zF

∂I1
Λ +

∂zF

∂I2
Λ2

)
, (34)

where the tensor Λ is defined by

Λ = I−2/3

3 (g) g · gT .

The invariants of the tensor Λ are given by

I1(G) = I1(Λ) = Λ1 + Λ2 +
1

Λ1Λ2

≥ 3, I2(G) = I2(Λ) = Λ2
1 + Λ2

2 +
1

Λ2
1Λ2

2

≥ 3,

where Λ1, Λ2 are two independent eigenvalues of Λ.

7 Constitutive equation for the pressure

Let us assume that the free energy may be represented as a composition

zF = f(ϑ, η, ζ, z) + zFd(ϑ, η, z, I1, I2).

In such a case the pressure is determined by

p = −
∂f

∂ζ
. (35)

Let the pressure p be a linear function of the temperature

p = f1(ζ, η, z) + f2(ζ, η, z)ϑ. (36)

The most popular in physics of solids the constitutive equations by van-der-Waals and by Mu–
Grüneisen have namely this form. For example, the van-der-Waals equation can be written as

p(ζ, ϑ) = −
a

ζ2
+

c ϑ

ζ − b
, (37)

where a, b and c are the characteristics of the material. However, in our case these quantities may
depend on the parameters η, z. It is known that the van-der-Waals equation satisfactory predicts
the behavior of the real gases. It seems obvious that Eq.(36) can be by corresponding choice of
the functions f1 f2 used not only for liquids and gases but for solids with the phase transitions.
The pressure at ϑ = 0 is described by means of the function f1(ζ, η, z), the possible form of
which is shown in Figure 1. The material shown in Figure 1 has three stable equilibrium states.
The transition from one state to another is a typical phase transition. It is easy to understand that
the diagram, like shown in Figure 1, cannot be found by experiment. However, the envelops of
the true diagram can be established in an experiment. The upper envelope describes the properties
of a material under compression, and the lower envelope describes the properties of the material
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dp

dρ
> 0 ρ0/ρ

p

dp

dρ
< 0

Figure 1: Constitutive equation for the pressure at zero temperature.

under extension. At the qualitative consideration the function f 2(ζ, η, z) may be chosen as in
the van-der-Waals equation. The simplest example of the constitutive equation for the material
with finite tensile strength is given by the expression

p = f0

(
ζ−m − ζ−n

)
+

c ϑ

ζ − b
, (38)

where m > n, ζ > b(η). The pressure dependence on ζ at different temperatures is shown in
Figure 2. Using Eq.(36) and Eq.(38) we find the expression for the free energy

Figure 2: The pressure dependence on ζ4 for different temperatures.

ρ0 F(ζ, ϑ, E) = f0

(
ζ−m+1

m − 1
−

ζ−n+1

n − 1

)
− c ϑ ln (ζ − b) + ψ(ϑ),
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where ψ(ϑ) is some function of temperature. More general form of the constitutive equation for
the pressure is given by

p =

N∑
k=0

akζ−k +
c ϑ

ζ − b
, (39)

where parameters (ak, N, c, b) are characteristics of material. All of them may depend on the
structural parameter η. Besides, maybe it will be useful to take more general form of the function
f2. In general, Eq.(39) corresponds to the material with N solid phase states. If we desire to take
into account the phase transition “solid–liquid” and “liquid–gas”, then we have to construct the
curve like shown in Figure 3. If it is desirable to take into account a several solid phase states,
then we have to add to the constitutive equation the terms like the first term in the right hand side
of Eq.(39).

IIIIIIVV
p

I

Figure 3: The three-phases medium: zones I, III, V correspond to stable gaseous, liquid and solid
phases respectively; zones II, IV correspond the unstable states

8 Constitutive equation for the stress tensor deviator

From conventional point of view the state equation of solid is the relation between pressure,
temperature and the mass density or volume. However the constitutive equation for the deviator
τ of the stress tensor cannot be ignored. Let us underline that the most of the phase transitions in
solid are connected with the fact that the maximal shear stress in material has a rather low upper
limit. When defining the function zFd we have first of all to take into account this fact. Let the
values 0 < λ1 ≤ λ2 ≤ λ3 (λ1λ2λ3 = 1) be eigenvalues of the tensor G. Let us introduce the
quantity

σ ≡ 3I2(G) − I21(G) = (λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2. (40)

If σ = 0, then G = E. Now let us assume that the deviatoric part of free energy zFd depends
on the parameters σ and I1 rather than invariants I1, I2. In such a case from Eqs.(34) one may
obtain the equation

ζτ = −
∂zF

∂I1

(
Λ −

1

3
I1E
)

+ 2
∂zF

∂σ

[(
σ − I21

)
3

E + 2I1Λ − 3Λ2

]
. (41)
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If we consider the case of small deformations when ||(∇u|| 
 1, then instead of Eq.(41) we get

ζτ = 2µ devε + O(ε2), µ ≡ ∂zF

∂I1
, (42)

where ε is the tensor of linear deformations, the parameter µ may be termed the shear modulus.
From Eq.(42) we see that in linear theory the dependence of free energy on a parameter σ is not
important. By this reason and for the sake of simplicity we assume that the free energy does not
depend on the parameter σ and Eq.(41) takes a form

ζτ = 2µ

(
1

3
I1E − Λ

)
, µ ≡ ∂zF

∂I1
. (43)

The shear modulus µ is a function like µ = µ(ϑ, η, z, I1). In order to define the function
µ(ϑ, η, z, I1) we have many possibilities. But at the moment it is difficult to understand by
unique manner what possibility is used by the Nature. The shear modulus depends on four
different parameters ϑ, η, z, I1. For all of them we have governing equations. We thing that the
dependence µ from the temperature is not crucial one. The same may be said with respect to the
variable z. However, the parameters η and I1 have a crucial influence on the shear modulus. The
problem is that from physical point of view both η and I 1 influences on the shear modulus in the
almost similar way. As far as we know in mechanics of solids the parameter η has never been
used and the behavior of the shear modulus is determined by deformations. In such a case it is
possible to use, for example, the following representation

µ = µ0(ϑ, z)

[
1 − cos

(
π(I1 − 3)

2l∗

)]
(44)

where l∗ is a some characteristic of the material. The representation Eq.(44) corresponds to the
free energy which looks just like the potential by Frenkel – Kontorova [4] in dynamics of crystal
lattice. We do not think that this representation is sufficiently good for practical needs. At the
moment we would like to point out the qualitative behavior of the shear modulus. We have to
remember that under high pressure the shear modulus must vanish. The dependence of shear
modulus on I1 is not monotone in order to describe the Savart – Masson effect.
Maybe, more realistic constitutive equation for shear modulus is given by representation like

µ = µ0(ϑ, z, I1)(1 − cp)2(cp − 0.26)2, (45)

where cp is the porosity which must satisfy Eq.(9). Small values of (1 − cp) occur for the
gases. For solids cp is close to 0.26. The quantitative dependence of µ from cp may be, of
course, different from Eq.(45). It is quite possible that we will need some combination of the
representations like Eq.(44) and Eq.(45). The future investigations have to clear the situation.

Conclusion

Above a general (maybe, superfluous general) theory of materials in any phase states is devel-
oped. The present state of the theory does not suit for those people who desire to obtain the
practical results immediately. But what do we know? We know that during more than 150 years
the applied theories of inelastic materials were developed in great extent. And in spite of this
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there exist a lot of very old experimental results which cannot be described by the existing the-
ories. Why? Maybe, it is time to go far from practical results and to develop the theory which
is right from fundamental point of view. We think that any applied theory must be consistent
with the theory of such a kind. At the moment we have made only initial steps. However even
from these initial steps we see that some conventional statements are not valid. For example,
everybody knows that I3(g) is responsible for a volume change of a material. But we saw that it
is not so and we have to introduce the special object to characterize the material volume. From
physical point of view it is clear that the important role in the description of inelastic properties
of the material must play the chemical potential which is responsible for the structural transfor-
mation in the material. As far we know the chemical potential was used in continuum mechanics
only in the case of the multi-component media.

We hope that the given above theory attracts the attention both physicists and mathematicians.
The theory is needed in additional minds to create the true useful applied theory.
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